| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Application and Future Trend of Cold Sintering Process in ZnO-based Varistor Ceramics |
| LI Lei, JIA Yuxuan, LI Guorong, MAN Zhenyong, ZHENG Liaoying*
|
| Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China |
|
|
|
|
Abstract ZnO-based varistor ceramics are extensively employed in the field of electronics, owing to their excellent nonlinear current-voltage characteristics, fast response speed and robust transient energy absorption capabilities. However, the high sintering temperature of commercial ZnO-Bi2O3 varistor ceramics leads to a series of problems such as the volatilization of secondary phases deviating from the designed composition, poor grain size uniformity, and high energy consumption, thereby falling to meet the requirements for high-end applications and the national strategies for energy conservation and environmental protection. The cold sintering process (CSP) technology proposed in recent years can achieve the densification of ceramic materials at no more than 350 ℃ under the synergistic effect of the intermediate liquid phase, uniaxial pressure and temperature. Currently, the cold sintering preparations of quaternary doped ZnO-based varistor ceramics and ZnO-organic composite varistor cera-mics have been achieved. This paper reviews the cold sintering process and its densification mechanism, the influence of preparation conditions on densification, and classifies and summarizes the application of cold sintering in ZnO-based varistor ceramics. Finally, the development trend of cold sintering technology in varistor devices is prospected.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Clarke D R. Journal of the American Ceramic Society, 1999, 82(3), 485. 2 Zhao X T, Liao R J, Liang N C, et al. Journal of Applied Physics, 2014, 116(1), 014103. 3 Zhao M, Song H H, Cui W Z, et al. Ceramics International, 2021, 47(16), 23362. 4 Peng P, Deng Y J, Niu J P, et al. Journal of Advanced Ceramics, 2020, 9(6), 683. 5 Zhao X T, Liang J, Sun J J, et al. Journal of the European Ceramic Society, 2021, 41(1), 430. 6 He J J, Song L, Zhou B Z, et al. Transactions of China Electrotechnical Society, 2023, 38(20), 5605 (in Chinese). 何俊佳, 宋丽, 周本正, 等. 电工技术学报, 2023, 38(20), 5605. 7 Maria J P, Kang X, Floyd R D, et al. Journal of Materials Research, 2017, 32(17), 3205. 8 Galotta A, Sglavo V M. Journal of the European Ceramic Society, 2021, 41(16), 1. 9 Badev A, Marinel S, Heuguet R, et al. Acta Materialia, 2013, 61(20), 7849. 10 Egorov S V, Eremeev A G, Kholoptsev V V, et al. Journal of the European Ceramic Society, 2021, 41(13), 6508. 11 Lee W C, Liu K S, Lin I N. Journal of Materials Science, 2000, 35(19), 4841. 12 Radingoana P M, Guillemet-Fritsch S, Olubambi P A, et al. Ceramics International, 2019, 45(8), 10035. 13 Lin D B, Fan L C, Shi Y, et al. Optical Materials, 2017, 71, 151. 14 Liang J, Zhao X T, Sun J J, et al. Ceramics International, 2020, 46(10, Part A), 15076. 15 Schmerbauch C, Gonzalez-Julian J, Röder R, et al. Journal of the American Ceramic Society, 2014, 97(6), 1728. 16 Jiang M, Shi M Y, Li J M, et al. Microelectronics International, 2022, 39(4), 166. 17 Mazaheri M, Hassanzadeh-Tabrizi S A, Sadrnezhaad S K. Ceramics International, 2009, 35(3), 991. 18 Dahl P, Kaus I, Zhao Z, et al. Ceramics International, 2007, 33(8), 1603. 19 Danezan A, Delaizir G, Tessier-Doyen N, et al. Journal of the European Ceramic Society, 2018, 38(2), 769. 20 Sofia D, Barletta D, Poletto M. Additive Manufacturing, 2018, 23, 215. 21 Liu Y Y, Wang C Y, Zhang K D. International Journal of Applied Ceramic Technology, 2022, 19(4), 1904. 22 Guo J, Guo H Z, Baker A L, et al. Angewandte Chemie International Edition, 2016, 55(38), 11457. 23 Grasso S, Biesuz M, Zoli L, et al. Advances in Applied Ceramics, 2020, 119(3), 115. 24 Vakifahmetoglu C, Karacasulu L. Current Opinion in Solid State and Materials Science, 2020, 24(1), 100807. 25 Sohrabi Baba Heidary D, Lanagan M, Randall C A. Journal of the European Ceramic Society, 2018, 38(4), 1018. 26 Li Y C, Zhao X T, Kang S L, et al. Journal of Materials Science: Materials in Electronics, 2023, 34(31), 2105. 27 Ouyang R F, Shi W, Chen Y X, et al. Journal of the Chinese Ceramic Society, 2023, 51(8), 2108 (in Chinese). 欧阳瑞丰, 施玮, 陈云霞, 等. 硅酸盐学报, 2023, 51(8), 2108. 28 Marín-Cortés S, Biesuz M, Bhandari S, et al. Journal of the European Ceramic Society, 2024, 44(16), 116813. 29 Funahashi S, Guo J, Guo H Z, et al. Journal of the American Ceramic Society, 2017, 100(2), 546. 30 Kumar M, Ben Achour M A, Lasgorceix M, et al. Open Ceramics, 2024, 17, 100566. 31 Ndayishimiye A, Sengul M Y, Bang S H, et al. Journal of the European Ceramic Society, 2020, 40(4), 1312. 32 Ndayishimiye A, Grady Z A, Tsuji K, et al. Journal of the American Ceramic Society, 2020, 103(5), 3039. 33 Hong W B, Li L, Cao M, et al. Journal of the American Ceramic Society, 2018, 101(9), 4038. 34 Ndayishimiye A, Fan Z M, Funahashi S, et al. Inorganic Chemistry, 2021, 60(17), 13453. 35 Biesuz M, Taveri G, Duff A I, et al. Advances in Applied Ceramics, 2020, 119(2), 75. 36 Gonzalez-Julian J, Neuhaus K, Bernemann M, et al. Acta Materialia, 2018, 144, 116. 37 Guo N, Shen H Z, Shen P. Journal of the European Ceramic Society, 2023, 43(2), 452. 38 Guo H Z, Baker A, Guo J, et al. ACS Nano, 2016, 10(11), 10606. 39 Jabr A, Fanghanel J, Fan Z M, et al. Journal of the European Ceramic Society, 2023, 43(4), 1531. 40 Sengul M Y, Guo J, Randall C A, et al. Angewandte Chemie International Edition, 2019, 58(36), 12420. 41 Shi Y, Huang Z Y, Chen J J, et al. Ceramics International, 2022, 48(20), 30517. 42 Bang S H, Sengul M Y, Fan Z, et al. Materials Today Chemistry, 2022, 24, 100925. 43 Nur K, Mishra T P, Silva J G P D, et al. Journal of the European Ceramic Society, 2021, 41(4), 2648. 44 Serrano A, Caballero-Calero O, García M Á, et al. Journal of the European Ceramic Society, 2020, 40(15), 5535. 45 Jiang X P, Zhu G S, Xu H R, et al. Ceramics International, 2019, 45(14), 17382. 46 Kang X Y, Floyd R, Lowum S, et al. Journal of the American Ceramic Society, 2019, 102(8), 4459. 47 Bang S H, Tsuji K, Ndayishimiye A, et al. Journal of the American Ceramic Society, 2020, 103(4), 2322. 48 Hernández J A, Oliver J, Cante J C, et al. Powder Metallurgy, 2012, 55(1), 36. 49 Smirnov A V, Kornyushin M V, Kholodkova A A, et al. Inorganics, 2022, 10(11), 197. 50 Guo J, Legum B, Anasori B, et al. Advanced Materials, 2018, 30(32), e1801846. 51 Guo J, Si M, Zhao X, et al. Carbon, 2022, 190, 255. 52 Gao L, Yang X, Hu J, et al. Materials Letters, 2016, 171, 1. 53 Guo J, Berbano S S, Guo H Z, et al. Advanced Functional Materials, 2016, 26(39), 7115. 54 Zhao X T, Guo J, Wang K, et al. Advanced Engineering Materials, 2018, 20(7), 1700902. 55 Hérisson De Beauvoir T, Tsuji K, Zhao X T, et al. Acta Materialia, 2020, 186, 511. 56 Xiao Y J, Yang Y, Kang S L, et al. Molecules, 2024, 29(1), 129. 57 Si M M, Hao J Y, Zhao E D, et al. Acta Materialia, 2021, 215, 117036. 58 Si M M, Guo J, Hao J Y, et al. Composites Part B: Engineering, 2021, 226, 109349. 59 Mena-Garcia J, Dursun S, Tsuji K, et al. Journal of the European Ceramic Society, 2022, 42(6), 2789. 60 De Beauvoir T H, Dursun S, Gao L, et al. ACS Applied Electronic Materials, 2019, 1(7), 1198. 61 Dursun S, Tsuji K, Bang S H, et al. ACS Applied Electronic Materials, 2020, 2(7), 1917. 62 Guo J, Zhao X T, Herisson De Beauvoir T, et al. Advanced Functional Materials, 2018, 28(39), 1801724. 63 Liang J, Zhao X T, Kang S L, et al. Journal of the European Ceramic Society, 2022, 42(13), 5738. 64 Zhao X T, Xiao Y J, Kang S L, et al. Journal of Materials Science: Materials in Electronics, 2023, 34(26), 1798. 65 Sun J J. Study on fabrication and properties of high-breakdown-field ZnO varistor ceramics based on the “Cold Sintering”. Master’s Thesis, Chongqing University, China, 2020 (in Chinese). 孙健杰. 基于“冷烧结”技术的高击穿场强氧化锌压敏陶瓷制备与性能研究. 硕士学位论文, 重庆大学, 2020. 66 Liang J. Study on the preparation technology and properties of high performance ZnO varistor ceramics based on spark plasma-assisted cold sintering process. Master’s Thesis, Chongqing University, China, 2022 (in Chinese). 梁杰. 基于等离子体辅助冷烧结技术的高性能氧化锌压敏陶瓷制备工艺与性能研究. 硕士学位论文, 重庆大学, 2022. 67 Kermani M, Biesuz M, Dong J, et al. Journal of the European Ceramic Society, 2020, 40(15), 6266. 68 Guo H Z, Guo J, Baker A, et al. ACS Applied Materials & Interfaces, 2016, 8(32), 20909. 69 Zheng J C, Deng M, Shi Y, et al. Journal of the European Ceramic Society, 2024, 44(4), 2182. 70 Tian T, Li G R, Bernik S, et al. Materials Science in Semiconductor Processing, 2023, 163, 107570. 71 Tian T, Zheng L Y, Podlogar M, et al. ACS Applied Materials & Interfaces, 2021, 13(30), 35924. 72 Jabr A, Jones H N, Argüelles A P, et al. Journal of the European Ceramic Society, 2023, 43(12), 5319. |
|
|
|