| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress of Fe-Cr Metal Support in Solid Oxide Fuel Cells |
| ZHU Zhigang1,2, SONG Chen2,*, DONG Dongdong2, LIU Taikai2, WEN Kui2, DENG Changguang2, NING Honglong1,3, LIU Min2
|
1 School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China 2 Institute of New Materials, Guangdong Academy of Sciences, National Engineering Laboratory of Modern Materials Surface Engineering Technology, Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Guangdong-Hong Kong Joint Laboratory of Modern Surface Engineering Technology, Guangzhou 510650, China 3 International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, Guangdong, China |
|
|
|
|
Abstract Metal-supported solid oxide fuel cells have great application potential prospects in mobile fields and fixed power generation systems due to its advantages of fast start-up speed, high mechanical strength and low cost. Fe-Cr alloy has become a commonly used metal support mate-rial because of its good adaptability and high-cost performance. However, its oxidation corrosion, element inter-diffusion and thermal expansion coefficient mismatch with the ceramic power generation layer under high-temperature conditions affects the output performance and long-term stability of the cell. This review concentrates on the factors and modification methods that affect the performance of Fe-Cr supports. Firstly, the cha-racteristics of commonly used materials and the key factors that determine the thermal expansion coefficient are introduced. The high-temperature mechanical properties of metal supports and their regulation are discussed. The influence of support structure design on cell output performance is analyzed. Then, the relationship between the preparation process and the microstructure of the porous support is summarized. The oxidation behavior and element inter-diffusion problems of Fe-Cr metal supports are discussed, and the specific solutions are summarized. Finally, the current problems and future development trends of Fe-Cr metal supports have been prospected to provide references and ideas for the research and development of high-power and long-life SOFCs.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Fallah Vostakola M, Amini Horri B. Energies, 2021, 14(5), 1280. 2 Liu Runze, Zhou Fen, Wang Qingchun, et al. Materials Reports, 2021, 35(S1), 29(in Chinese). 刘润泽, 周芬, 王青春, 等. 材料导报, 2021, 35(S1), 29. 3 Kuterbekov K A, Nikonov A V, Bekmyrza K Z, et al. Nanomaterials, 2022, 12(7), 1059. 4 Singh M, Zapp D, Comini E. International Journal of Hydrogen Energy, 2021, 46(54), 27643. 5 Yu Shancheng, Chen Leyi, Wu Xiaobo, et al. Journal of Ceramics, 2021, 42 (1), 96(in Chinese). 余善成, 陈乐易, 吴晓波, 等. 陶瓷学报. 2021, 42 (1), 96. 6 Zhou Z, Nadimpalli V K, Pedersen D B, et al. Materials, 2021, 14(11), 3139. 7 Du K, Song C, Yuan B, et al. Journal of Power Sources, 2024, 621, 235298. 8 Zhang M, Song C, Liu M, et al. Ceramics International, 2024, 50(21, Part C), 44391. 9 Zhu Z, Ning H, Song C, et al. Journal of Thermal Spray Technology, 2024, 33(5), 1725. 10 Opakhai S, Kuterbekov K. Energies, 2023, 16, 4700. 11 Yang Z G, Paxton D M, Weil K S, et al. United States: N. p: Web, 2002, 10, 2172. 12 Du Ke, Song Chen, Yu Min, et al. China Surface Engineering, 2022, 35(1), 25(in Chinese) 杜柯, 宋琛, 余敏, 等. 中国表面工程, 2022, 35(1), 25. 13 Manjuna N, Santhy K, Rajasekaran B. International Journal of Hydrogen Energy, 2023, 48(81), 31767. 14 Jeong S, Yamaguchi T, Okamoto M, et al. ACS Applied Energy Materials, 2020, 3(1), 1222. 15 Mao J, Wang E, Wang H, et al. Renewable and Sustainable Energy Reviews, 2023, 185, 113597. 16 Matus Y B, De Jonghe L C, Jacobson C P, et al. Solid State Ionics, 2005, 176(5), 443. 17 Wang Pi, Song Chen, Dong Dongdong, et al. Materials Reports, 2025, 39(1), 119(in Chinese). 王丕, 宋琛, 董东东, 等. 材料导报, 2025, 39(1), 119. 18 Marr M, Kesler O. Surface and Coatings Technology, 2013, 216, 289. 19 Marr M, Kesler O. Journal of Thermal Spray Technology, 2012, 21(6), 1334. 20 Tucker M C. Journal of Power Sources, 2010, 195(15), 4570. 21 Tucker M C, Jacobson C P, De Jonghe L C, et al. Journal of Power Sources, 2006, 160(2), 1049. 22 Rojek-Wöckner V A, Opitz A K, Brandner M, et al. Journal of Power Sources, 2016, 328, 65. 23 Dogdibegovic E, Wang R, Lau G Y, et al. Journal of Power Sources, 2019, 437, 226935. 24 Tsai C H, Hwang C S, Chang C L, et al. Fuel Cells, 2018, 18(6), 800. 25 Yang ShengFu, Tsai ChunHuang, Chang ChunLiang, et al. In:Proceeding of the 42nd International Conference on Advanced Ceramics and Compo-sites, Florida, 2019, pp. 177. 26 Fergus J W. Materials Science and Engineering: A, 2005, 397(1), 271. 27 Garcia-Fresnillo L, Niewolak L, Quadakkers W J, et al. Oxidation of Metals, 2018, 89(1), 61. 28 Yoo Y, Wang Y, Deng X, et al. Journal of Power Sources, 2012, 215(Oct. 1), 307. 29 Koszelow D, Makowska M, Drewniak A, et al. Metallurgical and Materials Transactions A, 2023, 54(6), 2244. 30 Pirou S, Talic B, Brodersen K, et al. Journal of Materials Research and Technology, 2023, 48(29), 11017. 31 Gao P, Bolon A, Taneja M, et al. Solid State Ionics, 2017, 300, 1. 32 Ju Chunyan. Mechanical Research & Application, 2020, 33(6), 85(in Chinese). 居春艳. 机械研究与应用, 2020, 33(6), 85. 33 Cho S, Lee J, Shin S, et al. Journal of Materials Research and Technology, 2023, 25, 7241. 34 Bittner A, Kanas N,Hinterding R, et al. International Journal of Hydrogen Energy, 2019, 44(26), 13768. 35 Reisert M, Berova V, Aphale A, et al. International Journal of Hydrogen Energy, 2020, 45(55), 30882. 36 Leah R T, Bone A, Hammer E, et al. ECS Transactions, 2017, 78(1), 87. 37 Fu Tao, Gao Jiutao, Gao Yuan, et al. Thermal Spray Technology, 2022, 14(1), 28(in Chinese). 富涛, 高九涛, 高圆, 等. 热喷涂技术, 2022, 14(1), 28. 38 Arevalo-Quintero O, Kesler O. Fuel Cells, 2018, 18(4), 466. 39 Franco T, Schibinger K, Ilhan Z, et al. ECS Transactions, 2007, 7(1), 771. 40 Esposito L, Boccaccini D N, Pucillo G P, et al. Materials Science and Engineering: A, 2017, 691, 155. 41 Udomsilp D, Rechberger J, Neubauer R, et al. Cell Reports Physical Science, 2020, 1(6), 100072. 42 Nenning A, Bischof C, Fleig J, et al. Energies, 2020, 13(4), 987. 43 Bance A P, Brandan A B, Girvan B A, et al. Journal of Power Sources, 2004, 131(1-2), 86. 44 Froitzheim J, Meier G H, Niewolak L, et al. Journal of Power Sources, 2008, 178(1), 163. 45 Vayyala A, Povstugar I, Galiullin T, et al. Oxidation of Metals, 2019, 92(5), 471. 46 Kesler O, Cuglietta M, Harris J, et al. ECS Transactions, 2013, 57(1), 491. 47 Zhou Yucun, Ye Xiaofeng, Wang Shaorong. Journal of Inorganic Materials, 2016, 31(7), 769(in Chinese). 周玉存, 叶晓峰, 王绍荣. 无机材料学报, 2016, 31(7), 769. 48 Franco T, Henne R, Lang M, et al. Proceedings of the Electrochemical Society, 2003, 7, 923. 49 Hu B, Lau G, Song D, et al. Journal of Power Sources, 2023, 555, 232402. 50 Epstein N. Chemical Engineering Science, 1989, 44(3), 777. 51 Nielsen J, Persson Å H, Muhl T T, et al. Journal of the Electrochemical Society, 2018, 165(2), F90. 52 Hwang C S, Tsai C H, Hwang T J, et al. Fuel Cells, 2016, 16(2), 244. 53 Lyu Haipeng. Preparation and performance research of metal-supported solid oxide fuel cells. Ph. D. Thesis, China University of Mining and Technology, China, 2023(in Chinese). 吕海鹏. 金属支撑固体氧化物燃料电池的制备及其性能研究. 博士学位论文, 中国矿业大学, 2023. 54 Dogdibegovic E, Wang R, Lau G Y, et al. Journal of Power Sources, 2019, 410-411, 91. 55 Yamaguchi Y, Sumi H, Takahashi H, et al. ECS Transactions, 2019, 91(1), 909. 56 Dogdibegovic E, Cheng Y, Shen F, et al. Journal of Power Sources, 2021, 489, 229439. 57 Tomov R I, Krauz M, Tluczek A, et al. Materials for Renewable and Sustainable Energy, 2015, 4(3), 14. 58 Fu S, Zhang J, Xu K, et al. Frontiers in Energy Research, 2023, 11, 1127900. 59 Lin J, Li H, Wang W, et al. Journal of the American Ceramic Society, 2023, 106(1), 68. 60 Shin W, Yamaguchi Y, Horie M, et al. Ceramics International, 2023, 49(22, Part B), 36478. 61 Morán-Ruiz A, Vidal K, Larrañaga A, et al. International Journal of Hydrogen Energy, 2016, 41(38), 17053. 62 Leah R T, Bone A, Lankin M, et al. ECS Transactions, 2015, 68(1) 95. 63 Zhang S L, Li C X, Li C J, et al. Journal of Power Sources, 2016, 323, 1. 64 Wang Y P, Li C X, Gao J T, et al. International Journal of Green Energy, 2022, 19(8), 818. 65 Xu K, Zhu L. Metals, 2024, 14(4), 475. 66 Sarasketa-Zabala E, Otaegi L, Rodriguez-Martinez L M, et al. Solid State Ionics, 2012, 222-223, 16. 67 Dheeradhada V S, Cao H, Alinger M J. Journal of Power Sources, 2011, 196(4), 1975. 68 Molin S, Kusz B, Gazda M, et al. Journal of Power Sources, 2008, 181(1), 31. 69 Reddy M J, Svensson J E, Froitzheim J. Corrosion Science, 2021, 190, 109671. 70 Zhang W, Li J,Yang J, et al. International Journal of Hydrogen Energy, 2016, 41(47), 22246. 71 Xu K, Chen Z, Bao C, et al. International Journal of Hydrogen Energy, 2024, 73, 577. 72 Karczewski J, Dunst K J, Jasinski P, et al. Surface Coatings Technology, 2015, 261, 385. 73 Jeong H, Roehrens D, Bram M. Materials Letters, 2020, 258, 126794. 74 Dayaghi A M, Kim K J, Kim S J, et al. Journal of Power Sources, 2017, 360, 488. 75 Stefan E, Neagu D, Blennow Tullmar P, et al. Materials Research Bulletin, 2017, 89, 232. 76 Stange M, Denonville C, Larring Y, et al. International Journal of Hydrogen Energy, 2017, 42(17), 12485. 77 Wen Jing, Song Chen, Deng Ziqian, et al. Materials Research and Application, 2020, 14(2), 116(in Chinese). 温靖, 宋琛, 邓子谦, 等. 材料研究与应用, 2020, 14(2), 116. 78 Zhu Zhigang, Song Chen, Hu Yongjun, et al. Materials Research and Application, 2023, 17(2), 329(in Chinese). 朱志刚, 宋琛, 胡永俊, 等. 材料研究与应用, 2023, 17(2), 329. 79 Pham H C, Taniguchi S, Inoue Y, et al. Fuel Cells, 2017, 17(1), 83. 80 Piccardo P, Spotorno R, Geipel C. Energies, 2022, 15(10), 3548. 81 Yang S, Wang F, Che Q, et al. Journal of Alloys and Compounds, 2022, 921, 166085. 82 Welander M M, Hu B, Tucker M C. International Journal of Hydrogen Energy, 2022, 47(21), 11261. 83 Harthoj A, Alimadadi H, Holt T, et al. Journal of the Electrochemical Society, 2015, 162(4), F387. 84 Macauley C, Gannon P, Deibert M, et al. International Journal of Hydrogen Energy, 2011, 36(7), 4540. 85 Jemai R, Wederni M A, Amorri O, et al. Ceramics International, 2022, 48(10), 14050. 86 Kim K J, Kim S J, Choi G M. Journal of Power Sources, 2016, 307, 385. |
|
|
|