INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Optimizing the Microstructure and Mechanical Properties of Calcium Hexaluminate Ceramics by ZrO2 Addition |
YIN Xueliang1, WANG Huifang1, YANG Xi1, XU Lei2,*, MA Beiyue2
|
1 Department of Materials Science and Engineering, Shanxi Institute of Technology, Yangquan 045000, Shanxi, China 2 School of Metallurgy, Northeastern University, Shenyang 110819, China |
|
|
Abstract Calcium hexaluminate(CaAl12O19) is widely used in high-temperature ceramics and refractories due to its excellent fracture toughness, che-mical stability, and high refractoriness. However, its anisotropic grain growth adversely affects its sintering behavior, requiring temperatures of over 1 750 ℃ for full densification. This work investigated the influence of ZrO2 addition on the densification, microstructure, and mechanical properties of CaAl12O19 ceramics. The poor sinterability of calcium hexaluminate ceramics is primarily attributed to the formation of plate-like CaAl12O19 crystals, which results in an apparent porosity of 26.7% after sintering at 1 600 ℃. The added Zr4+ can be uniformly dissolved in the CaAl12O19 grains by substituting Al3+ in the mirror planes, thereby enhancing the sintering activity and grain growth. Additionally, the formation of substitutional solid solutions effectively suppresses anisotropic crystal growth and reduces the aspect ratio, accelerating the ion diffusion along both sides of the plate-like grains. The relative density increases from 71.5% to 93.7% with the addition of 3wt% ZrO2, while the homogeneity of the microstructure is significantly improved, with only a few residual micro-pores. These changes lead to a substantial enhancement of the mechanical properties of calcium hexaluminate ceramics, with the flexural strength and fracture toughness increasing from 128 MPa and 3.5 MPa·m1/2 to 228 MPa and 5.6 MPa·m1/2, respectively. Furthermore, a decrease in the creep rate by one order of magnitude is achieved at 1 550 ℃ by ZrO2 addition.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Li L, Yan Y, Hu Z, et al. Journal of the Chinese Ceramic Society, 2015, 43(3), 304 (in Chinese). 李利平, 严云, 胡志华, 等. 硅酸盐学报, 2015, 43(3), 304. 2 De Aza A H, Iglesias J E, Pena P, et al. Journal of the American Ceramic Society, 2000, 83(4), 919. 3 Liu Y, Wang E, Xu L, et al. International Journal of Minerals Metallurgy and Materials, 2023, 30(4), 756. 4 Li S, Chen D, Fu L, et al. Ceramics International, 2023, 49(10), 15787. 5 Dong J, Gu H, Huang A, et al. Journal of Iron and Steel Research, 2022, 34(8), 825 (in Chinese). 董健雄, 顾华志, 黄奥, 等. 钢铁研究学报, 2022, 34(8), 825. 6 Li Z, Du R, Fu L, et al. Journal of the American Ceramic Society, 2023, 106(11), 7057. 7 Cinibulk M K. Journal of the European Ceramic Society, 2000, 20(5), 569. 8 Dominguez C, Chevalier J, Torrecillas R, et al. Journal of the European Ceramic Society, 2001, 21(3), 381. 9 An L, Chan H M, Soni K K. Journal of Materials Science, 1996, 31(12), 3223. 10 Asmi D, Low I M. Ceramics International, 2008, 34(2), 311. 11 Asmi D, Low I M, Kennedy S, et al. Materials Letters, 1999, 40(2), 96. 12 Sánchez-Herencia A J, Moreno R, Baudin C. Journal of the European Ceramic Society, 2000, 20(14), 2575. 13 Cui K, Fu T, Zhang Y, et al. Journal of the European Ceramic Society, 2021, 41(15), 7935. 14 Li W, Feng X, Guo H, et al. Journal of the European Ceramic Society, 2024, 44(12), 7201. 15 Sakihama J, Salomão R. Ceramics International, 2024, 50(3), 4875. 16 Bae H M, Tsabit A M, Ryu S S, et al. Journal of the Korean Ceramic Society, 2024, 61(1), 104. 17 Kang G, Liu X, Wu R, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(3), 1038 (in Chinese). 康国卫, 刘馨, 吴然, 等. 硅酸盐通报, 2021, 40(3), 1038. 18 Yuan L, Yao X, Yan Z, et al. Journal of the Australian Ceramic Society, 2022, 58(5), 1701. 19 Suzuki Y, Nishihashi K. Ceramics International, 2023, 49(18), 29427. 20 Xu L, Wang E, Hou X, et al. Journal of the European Ceramic Society, 2020, 40(15), 6155. 21 Wen T, Jin Y, Yu J, et al. Construction and Building Materials, 2023, 385, 131534. 22 Cui S, Wang Q, Zhou Y, et al. Ceramics International, 2021, 47(24), 35302. 23 De la Iglesia P G, García-Moreno O, Menéndez J L, et al. Journal of Materials Research, 2023, 38(4), 1129. 24 Xu L, Chen M, Jin L, et al. Journal of the American Ceramic Society, 2015, 98(12), 4117. 25 Xu L. Study on the sintering behavior and properties of Al2O3-MgO-CaO system refractories. Ph. D. Thesis, Northeastern University, China, 2016 (in Chinese). 徐磊. Al2O3-MgO-CaO系耐火材料烧结行为及其性能的研究. 博士学位论文, 东北大学, 2016. 26 Rahaman M N. Ceramic processing and sintering, 2nd ed, Marcel Dekker Inc, USA, 2003, pp. 253. 27 Doyle P M, Schofield P F, Berry A J, et al. American Mineralogist, 2014, 99(7), 1369. 28 Rice R W. Key Engineering Materials, 1996, 115, 1. 29 Xu L, Liu Y, Chen M, et al. Ceramics International, 2022, 48(15), 22560. |
|
|
|