| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress of Solute Atomic Clusters in Natural Aging Al-Cu Alloys |
| HAN Jingyi, ZHANG Peng*, LIU Gang
|
| School of Materials Science and Engineering, Xi’an Jiaotong University, Xi ’an 710049, China |
|
|
|
|
Abstract Artificial aging is an effective way to improve the performance of aluminum alloy, but there are problems such as hardenability, large thermal stress introduced by solution quenching aging and other methods. So the development of heat-treatment-free aluminum alloy are proposed, that is, using natural aging to strengthen the alloy. Natural aging can reduce the thermal stress deformation, while eliminate part of the heat treatment process, which has the advantages of reducing manufacturing costs, energy saving and emission reduction. In the natural aging phase of alloys, solute atomic clusters are generally formed, that is, nanometer/subnanometer disordered aggregation regions formed by solute atoms in the matrix. Cluster strengthening can cause significant strengthening effect and plasticity toughness, and effectively resist fatigue crack propagation, showing excellent comprehensive properties. In recent years, thanks to the gradual improvement and development of three-dimensional atomic probes, small angle scattering and other characterization techniques, the study of natural aging cluster strengthening and toughening has been gradually deepened. In this paper, the research progress of natural aging Al-Cu alloys in recent years was summarized from the aspects of strengthening and toughening, microscopic characterization and application of Al-Cu-Li, Al-Cu-Sn and Al-Cu-Mg alloys, and the possible research directions in the future were prospected.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Ardell A J. Metallurgical and Materials Transactions A, 1985, 16, 2131. 2 Garrett G G, Knott J F. Metallurgical and Materials Transactions A, 1978, 9a, 1187. 3 Liu G, Zhang P, Yang C, et al. Acta Metallurgica Sinica, 2021, 57(11), 1484(in chinese). 刘刚, 张鹏, 杨冲, 等. 金属学报, 2021, 57(11), 1484. 4 Marlaud T, Deschamps A, Bley F, et al. Acta Metallurgica Sinica, 2010, 58(14), 4814. 5 Chen Y, Weyland M, Hutchinson C. Acta Metallurgica Sinica, 2013, 61(15), 5877. 6 Shi K K, Zhao X L, Zhang P, et al. Chinese Journal of NonFerrous Metals, 2020, 30(11), 2513(in Chinese). 史坤坤, 赵小龙, 张鹏, 等. 中国有色金属学报, 2020, 30(11), 2513. 7 Zhang P, Zhi K K, Bian J J, et al. Acta Metallurgica Sinica, 2021, 207, 116682. 8 Abd El-Aty A, Xu Y, Guo X Z, et al. Journal of Advanced Research, 2018, 10, 49. 9 Purnima B, Ripudaman S, Ranjan J S, et al. Journal of Alloys and Compounds, 2023, 964, 171343. 10 Dingding L, Ben L, Tianle L, et al. Journal of Materials Science & Technology, 2023, 148, 75. 11 Shuai C, Cunsheng Z, Mingfu l, et al. Materials Science & Engineering A, 2021, 814, 141125. 12 Deschamps A, Garcia M, Chevy J, et al. Acta Metallurgica Sinica, 2017, 122, 32. 13 Yoshimura R, Konno T, Abe E, et al. Acta Metallurgica Sinica, 2003, 51(10), 2891. 14 Liu C H, Zhou Y H, Ma P P, et al. Materials Characterization, 2023, 199, 112791. 15 Peng J, Bahl S, Shyam A, et al. Acta Metallurgica Sinica, 2020, 196, 747. 16 Peng J, Bahl S, Shyam a, et al. Acta Metallurgica Sinica, 2020, 196, 747. 17 Laure B, Yong Z, Zezhong Z, et al. Nature Communications, 2020, 11(1), 1248. 18 Wang X, Shao W, Jiang J, et al. Materials Science & Engineering a, 2020, 782, 139253. 19 Decreus B, Deschamps A, Geuser D F, et al. Acta Metallurgica Sinica, 2013, 61(6), 2207. 20 Ovri H, Jägle A E, Stark A, et al. Materials Science & Engineering A, 2015, 637, 162. 21 Gayle F W, Heubaum F H, Pickens J R. Scripta Metallurgica et Materialia, 1990, 24(1), 79. 22 Ivanov R, Deschamps A, Geuser D F. Acta Metallurgica Sinica, 2018, 157, 186. 23 Ivanov R, Deschamps A, Geuser D F. Journal of Applied Crystallography, 2017, 50, 1725. 24 Wu L, Chen Y, Li X, et al. Materials Science & Engineering A, 2019, 744, 581. 25 Ma P P, Zhan L H, Liu C H, et al. Journal of Alloys and Compounds, 2019, 790, 8. 26 Gong X P, Wu C L, Luo S F, et al. Acta Metallurgica Sinica, 2013, 59(11), 1428(in chinese). 巩向鹏, 伍翠兰, 罗世芳, 等. 金属学报, 2023, 59(11), 1428. 27 Ddeng X S, Liu Z Z, Zeng J G, et al. Journal of Materials Science & Technology, 2024, 192, 42. 28 Bourgeois L, Nie F J, Muddle C B. Philosophical Magazine, 2005, 85(29), 3487. 29 Ringer S P, Hono K, Sakurai T. Metallurgical and Materials Transactions A, 1995, 26(9), 2207. 30 Ringer S P, Hutchinson C R, Hono K, et al. Science reports of the Research Institutes, 1997, 44(2), 241. 31 Bourgeois L, Nie J F, Muddle B C. Materials Science Forum, 2002, 449(396), 789. 32 Bourgeois L, Wong T, Xiong X Y, et al. Materials Science Forum, 2006, 38(519), 495. 33 Honma T, Saxey W D, Ringer P S. Materials Science Forum, 2006, 519, 203. 34 Staab T E M, Lotter F, Mühle U, et al. Journal of Materials Science, 2021, 56, 8717. 35 Polmear I J. In:Materials Forum-Aluminium Alloys, Their Physical and Mechanical Properties. Australia, 2004, pp. 28. 36 Starink M, Gao N, Yan J. Materials Science & Engineering A, 2004, 387, 222. 37 Abis S, Massazza M, Mengucci P, et al. Scripta Materialia, 2001, 45(6), 685. 38 Starink M J, Gao N, Davin L, et al. Philosophical Magazine, 2005, 85(13), 1395. 39 Wang C S, Starink J M, Gao N. Materials Science Forum, 2007, 62(546), 775. 40 Khan I N, Starink M J, Sinclair I, et al. Materials Science and Technology, 2008, 24(12), 1411. 41 Urena A, Otero E, Utrilla M V, et al. Journal of Materials Processing Tech, 2006, 182(1), 624. 42 Zurob H, Seyedrezai H. Scripta Materialia, 2009, 61(2), 141. 43 Lomer W M. Nature, 1958, 181(4607), 449. 44 Klobes B, Maier K, Staab T E M. Materials Science & Engineering A, 2011, 528(7), 3253. 45 Klobes B, Staab T E M, Haaks M, et al. Physica Status Solidi (RRL) -Rapid Research Letters, 2008, 2(5), 224. 46 Khan I, Starink M, Yan J. Materials Science & Engineering A, 2007, 472(1), 66. 47 Cheny T, Lee S L, Bor H Y, et al. Metallurgical and Materials Transactions, 2013, 44a(6), 2831. 48 Shao D, Zhang P, Zhang Y J, et al. Metallurgical and Materials Tran-sactions, 2017, 48a(9), 4121. 49 Marceau R, Vaucorbeil D A, Sha G, et al. Acta Metallurgica Sinica, 2013, 61(19), 7285. 50 Zheng Z, Liu W, Liao Z, et al. Acta Metallurgica Sinica, 2013, 61(10), 3724. 51 Lotter F, Petschke D, De Geuser F, et al. Scripta Materialia, 2018, 168, 104. 52 Hommat, Moody M P, Saxey D W, et al. Metallurgical and Materials Transactions, 2012, 43a(7), 2192. 53 Zhang Y, Zhang Z, Medhekar V N, et al. Acta Metallurgica Sinica, 2017, 141, 341. 54 Chen Y Q, Zhang Z Z, Chen Z, et al. Acta Metallurgica Sinica, 2017, 125, 340. 55 Zuiko I, Kaibyshev R. Journal of Alloys and Compounds, 2018, 759, 108. 56 Zuiko I S, Gazizov M R, Kaibyshev R O. The Physics of Metals and Me-tallography, 2016, 117(9), 906. 57 Wang S C, Starink M J. International Materials Reviews, 2005, 50(4), 193. 58 Bai S, Liu Z Y, Zhou X W, et al. Journal of Alloys and Compounds, 2014, 602, 193. 59 Mitlin D, Radmilovic V, Dahmen U, et al. Metallurgical and Materials Transactions a, 2003, 34a(3), 735. 60 Chen M C, Wen M C, Chiu Y C, et al. Materials, 2020, 13(24), 5631. 61 Qi H, Liu Y X, Liang X S, et al. Journal of Alloys and Compounds, 2016, 657, 318. 62 Kim I, Song M, Lee D, et al. Materials Science & Engineering A, 2020, 798, 140123. 63 Wang S, Starink M. Acta Metallurgica Sinica, 2007, 55(3), 933. 64 Wang S, Liu Z, Xia S, et al. Materials Characterization, 2017, 132, 139. 65 Magai Y, Murayama M, Tang Z, et al. Acta Metallurgica Sinica, 2001, 49(5), 913. 66 Barode J, Vayyala A, Aversa A, et al. Materials Today Communications, 2024, 39, 108978. 67 Jiang F Q, Tang L, Li S, et al. Journal of Alloys and Compounds, 2023, 945, 169311. 68 Yu Z, Li H, Cai P Z, et al. Journal of Materials Research and Technology, 2023, 23, 2010. |
|
|
|