| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Study on the Electronic and Gas Sensing Properties of Pt and Pd Modified Tin Sulfide Adsorption of Formaldehyde |
| MO Qiuyan1, WU Jiayin2,*, JING Tao3
|
1 Engineering Research Center for Micro Nano and Intelligent Manufacturing, Ministry of Education, Kaili University, Kaili 556011, Guizhou, China 2 Department of Engineering Technology, Guangdong Polytechnic Institute, Guangdong Open University, Guangzhou 510091, China 3 School of Science, Kaili University, Kaili 556011, Guizhou, China |
|
|
|
|
Abstract In this work, we employ density functional theory calculations to investigate the adsorption behavior of CH2O on intrinsic SnS monolayers as well as SnS monolayers modified with Pt and Pd. We focus on changes in geometric structure, adsorption energy, band structure, density of states, charge density difference, recovery time, and sensitivity before and after adsorption. Our findings reveal that on the intrinsic SnS monolayer, the adsorption energy between CH2O molecules and the SnS monolayer is small, and the adsorption distance is long, resulting in insensitivity of the intrinsic SnS monolayer to CH2O. After Pt modified SnS monolayer adsorbs CH2O, new energy levels are generated, forming strong interactions with SnS monolayer. This interaction improves the sensitivity of SnS monolayer adsorbs CH2O, reaching up to 75.7%. Similar to Pt, Pd modified SnS adsorbs CH2O and generates new energy levels with greater adsorption energy and charge transfer, achieving a sensitivity of up to 98.4%, which is 57.4 times higher than the intrinsic SnS monolayer. Additionally, the moderate adsorption energy(-0.621 eV) ensures excellent reversibility and a suitable recovery time (3.18 ms) for Pd-modified SnS monolayers at room temperature. Thus, SnS monolayers, as environmentally friendly materials, exhibit immense potential in gas pollution detection technology.
|
|
Published: 25 November 2025
Online: 2025-11-14
|
|
|
|
|
1 Wang Y H, Zhou Y, Wang Y J. Sensors and Actuators B:Chemical, 2020, 323, 128695. 2 Shao S F, Kim H W, Kim S S, et al. Applied Surface Science, 2020, 516, 145932. 3 Song M G, Choi J, Jeong H E, et al. Applied Surface Science, 2020, 529, 147189. 4 Bouchikhi B, Chludziński T, Saidi T, et al. Sensors and Actuators B:Chemical, 2020, 320, 128331. 5 Das S, Pandey D, Thomas J, et al. Advanced Materials, 2019, 31(1), 1802722. 6 Ui-Haq B, Alfaify S, Ahmed R, et al. Physical Review B, 2018, 97(7), 075438. 7 Tao L, Cinquanta E, Chiappe D, et al. Nature Nanotechnology, 2015, 10(3), 227. 8 Gillgren N, Wickramaratne D, Shi Y M, et al. 2D Materials, 2014, 2(1), 011001. 9 Ma S H, Yuan D Y, Wang Y R. Journal of Materials Chemistry C, 2018, 6(30), 8082. 10 Banai R E, Horn N W, Brownson J R S. Solar Energy Materials and Solar Cells, 2016, 150, 112. 11 He W K, Hong T, Wang D G, et al. Science China Materials, 2021, 64(12), 3051. 12 Xia C X, Du J, Xiong W Q, et al. Journal of Materials Chemistry, 2017, 5, 13400. 13 Tian H, Fan C, Liu G Z, et al. Applied Surface Science, 2019, 487, 1043. 14 Dragoman M, Dinescu A, Avram A, et al. Nanotechnology, 2022, 33(40), 405201. 15 Hu F F, Tang H Y, Tan C J, et al. IEEE Electron Device Letters, 2017, 38(7), 983. 16 Qin Y X, Wei Z J, Bai Y N. Vacuum, 2021, 183, 109792. 17 Shukla A, Gaur N K. Physica B:Condensed Matter, 2019, 572, 12. 18 Qiu P L, Qin Y X, Bai Y N, et al. Applied Surface Science, 2021, 570, 151155. 19 Yu G Y, Ge C Y, Wan H Q. Catalysts, 2022, 12(11), 1406. 20 He K, Jin Z, Chu X F, et al. RSC Advances, 2019, 9(49), 28439. 21 Govindan B, Madhu R, Abu-Haija M, et al. Catalysts, 2022, 12(10), 1180. 22 Zhu J T, Cai L J, Yin X M, et al. ACS Mano, 2022, 14(5), 5600. 23 Zhang Z S, Ye M N, Harvey E J, et al. Journal of the Electrochemical Society, 2019, 166(4), h135. 24 Qiu S J, Shen Y L, Wei G J, et al. Applied Catalysis B:Environmental, 2019, 259, 118036. 25 Kumar S, Lawaniya S D, Nelamarri S R, et al. ACS Applied Nano Materials, 2023, 6(17), 15479. 26 Kresse G, Furthmüller J. Physical Review B, 1996, 54(16), 11169. 27 Kresse G, Furthmüller J. Computational Materials Science, 1996, 6(1), 15. 28 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865. 29 Grimme S. Journal of Computational Chemistry, 2006, 27(15), 1787. 30 Soler J M, Artacho E, Gale J D, et al. Journal of Physics:Condensed Matter, 2002, 14, 2745. 31 Meir Y, Wingreen N S. Physical Review Letters, 1992, 68, 2512. 32 Aghaei S M, Aasi A, Farhangdoust S, et al. Applied Surface Science, 2021, 536, 147756. 33 Guo M, Zhao T F, Cui Z. Surface and Interfaces, 2024, 51, 104607. 34 Abbasi A. Materials Research Express, 2019, 6(7), 076410. 35 Feng C, Qin H B, Yang D G, et al. Materials, 2019, 12(4), 676. 36 Hafeez J, Islam M U, Ali S M, et al. Materials Science in Semiconductor Processing, 2024, 182, 108710. 37 Yeh C H. ACS Omega, 2020, 5(48), 31398. 38 Kadhim M M, Sadoon N, Gheni H A, et al. Computational and Theoretical Chemistry, 2023, 1219, 113941. 39 Al-Nadary H O, Eid K M, Badran H M, et al. Nanomaterials, 2023, 14(1), 7. |
|
|
|