NEW BIOMEDICAL MATERIALS |
|
|
|
|
|
Application of XPS in the Research of New Dental Medical Materials |
WANG Xinyao1,2, WEI Yongtao1,2, WU Jing3,4, WANG Xianbin3,4, YANG Wenchao1,2,*, ZHAN Yongzhong1,2
|
1 College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China 2 Key Laboratory of High Performance Structural Materials and Thermo-surface Processing (Guangxi University), Nanning 530004, China 3 Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning 530004, China 4 Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning 530004, China |
|
|
Abstract Tooth loss is one of the most common diseases in oral clinics. Implant restoration has become a conventional treatment plan for the restoration of missing teeth. Titanium and titanium alloy materials are commonly used as implant materials, which have the advantages of non-toxicity, matching elastic modulus with human hard tissue and high success rate of implant restoration. However, titanium-based implants have poor biological activity and even implant failure. Therefore, the surface modification technology of dental materials can improve the antibacterial properties and corrosion resistance of the implant surface and accelerate the process of bone bonding, improve its success rate and contribute to its long-term survival. X-ray photoelectron spectroscopy (XPS) has unique advantages such as “high sensitivity” and “ultramicroscopic” in the analysis of the surface mechanism of modified materials. In the research of new dental medical materials, XPS technology can be used to analyze the surface composition and chemical state of materials, which is crucial for the study of the key properties of materials such as antibacterial, corrosion resistance and biocompatibility. Through XPS technology, information such as elemental composition, chemical valence and surface chemical state can be accurately understood on the surface of the material, so as to evaluate the biosafety and functionality of the material.
|
Published: 10 March 2025
Online: 2025-03-18
|
|
|
|
1 Liu R Y, Zhang S S, Si Y, et al. Chinese Journal of Practical Stomatology, 2023, 16(5), 585 (in Chinese). 刘若迎, 张珊珊, 司燕, 等. 中国实用口腔科杂志, 2023, 16(5), 585. 2 Derks J, Tomasi C. Journal of Clinical Periodontology, 2015, 42, S158. 3 Yang Y, Wang Z F, Duan J M. Chinese Journal of Prosthodontics, 2018, 19(5), 5 (in Chinese). 杨勇, 王之发, 段建民. 口腔颌面修复学杂志, 2018, 19(5), 5. 4 Li D H. Journal of the Fourth Military Medical University, 2009, 30(5), 387 (in Chinese). 李德华. 第四军医大学学报, 2009, 30(5), 387. 5 Hou Y M. The mechanical properties of simulation of implant prosthesis based on the finite element. Master’s Thesis, Hebei University of Tech-nolog, China, 2015 (in Chinese). 侯玉梅. 基于有限元种植修复体的力学性能仿真研究. 硕士学位论文, 河北工业大学, 2015. 6 Geetha M, Singh A K, Asokamani, et al. Progress in Materials Science, 2008, 54(3), 397. 7 Zhang X P, Yu S R, Xia L J, et al. Rare Metal Materials and Engineering, 2002, 31(4), 246 (in Chinese). 张新平, 于思荣, 夏连杰, 等. 稀有金属材料与工程, 2002, 31(4), 246. 8 Yang K T, Song C L, Ma Z H, et al. Journal of Biomedical Engineering, 2024, 41(3), 604 (in Chinese). 杨开通, 宋成龙, 马智豪, 等. 生物医学工程学杂志, 2024, 41(3), 604. 9 Nordling C, Hagstrm S, Siegbahn K. Zeitschrift Für Physik, 1964, 178(5), 433. 10 Yang W C, Liu D F, Gao X, et al. China Port Science and Technology, 2022, 4(2), 30 (in Chinese). 杨文超, 刘殿方, 高欣, 等. 中国口岸科学技术, 2022, 4(2), 30. 11 Yin Y X. Preparation and exploration of photoresponse nanosystem TiN coating and CoP nanomateriaials in prevention and treatment of peri-implantitis. Ph. D. Thesis, Shandong University, China, 2021 (in Chinese). 尹贻鑫. 光响应纳米材料TiN及CoP的构建及其在预防治疗种植体周围炎领域的探索. 博士学位论文, 山东大学, 2021. 12 Yang Y. The study of preparation and preliminary application of oral health knowledge, attitude and practice questionnaire for patients with implant. Master’s Thesis, Huazhong University of Science and Technology, China, 2023 (in Chinese). 杨怡. 种植义齿患者口腔健康知信行问卷的编制及初步应用研究. 硕士学位论文, 华中科技大学, 2023. 13 Bharadwaj A, Rastogi A, Pandey S, et al. BioMed Research International, 2022, 2022(1), 5419874. 14 Li Y P, Li Z R. World Notes on Antibiotics, 2009, 30(4), 148 (in Chinese). 李艳萍, 李卓荣. 国外医药(抗生素分册), 2009, 30(4), 148. 15 Matica M A, Aachmann F L, Tøndervik A, et al. International Journal of Molecular Sciences, 2019, 20(23), 5889. 16 Yuan L, Li Z. Adhesion, 2023, 50(6), 123 (in Chinese). 袁力, 李治. 粘接, 2023, 50(6), 123. 17 De Silva M, Ning C, Ghanbar S, et al. Journal of Hospital Infection, 2015, 91(1), 53. 18 Sun X X, Gao J X, Li H, et al. Journal of Functional Materials, 2020, 51(9), 9066 (in Chinese). 孙晓萱, 高建新, 李杭, 等. 功能材料, 2020, 51(9), 9066. 19 Reznickova A, Nguyenova H Y, Zaruba K, et al. Vacuum, 2022, 203, 111268. 20 Palmieri V, Bugli F, Lauriola M C, et al. ACS Biomaterials Science & Engineering, 2017, 3(4), 619. 21 Xuan J Q, Feng W G, Wang J Y, et al. Drug Resistance Updates, 2023, 68, 100954. 22 Chen G M, Lyu W Q, Jiang M G, et al. Liaoning Chemical Industry, 2020, 49(7), 867 (in Chinese). 陈国铭, 吕婉秋, 江民乾, 等. 辽宁化工, 2020, 49(7), 867. 23 Tang H, Zhang P, Kieft T L, et al. Acta Biomaterialia, 2010, 6(7), 2562. 24 Durdu S, Yalçin E, Altinkök A, et al. Scientific Reports, 2023, 13(1), 4699. 25 Li J J, Wu X Q, Liang Z J, et al. Colloids and Surfaces B: Biointerfaces, 2023, 230, 113477. 26 Zhang S, Liang X J, Gadd G M, et al. Applied Surface Science, 2019, 490, 231. 27 Chai M Z, An M W, Zhang X Y. Materials Science and Engineering: C, 2021, 129, 112416. 28 Zhang Z J. Construction of therapeutic cationic antibacterial polymers for oral infection treatment. Master’s Thesis, Soochow University, China, 2023 (in Chinese). 章子俊. 口腔感染治疗性阳离子抗菌聚合物的合成. 硕士学位论文. 苏州大学, 2023. 29 Karpiński T M, Szkaradkiewicz A K. European Review for Medical and Pharmacological Sciences, 2015, 19(7), 1321. 30 Wu X Q, Li L Q, Tao W, et al. Biomaterials Advances, 2023, 151, 213491. 31 Arita K, Shinonaga Y, Nishino M. Dental Materials Journal, 2006, 25(4), 684. 32 Shinonaga Y, Arita K. Acta Biomaterialia, 2012, 8(3), 1388. 33 Jin G Y. Preparation of cationic polymer containing hydrogel dressing andintegrated treatment of MRSA infection wound. Master’s Thesis, Jilin University, China, 2023 (in Chinese). 金冠甬. 含阳离子聚合物的水凝胶敷料制备及在MRSA感染创面的一体化治疗. 硕士学位论文, 吉林大学, 2023. 34 Sun F, Hu W, Zhao Y, et al. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112696. 35 Atefyekta S, Pihl M, Lindsay C, et al. Acta Biomaterialia, 2019, 83, 245. 36 Zhang C, Huang J, Lan X, et al. Applied Surface Science, 2021, 557, 149799. 37 Li X Y, Qi F X, Zhu J X, et al. Materials Today Communications, 2024, 41, 110683. 38 Skorupa M, Skonieczna M, Shyntum D Y, et al. Electrochimica Acta, 2024, 492, 144354. 39 Jamesh M I. Lubricants, 2022, 10(10), 255. 40 Akhtar M, Uzair S A, Rizwan M, et al. Frontiers in Materials, 2022, 8, 747169. 41 Pesode P A, Barve S B. Materials Today: Proceedings, 2021, 47, 5652. 42 Wang H, Liang C H. Corrosion Science and Protection Technology, 2004, 16(2), 96 (in Chinese). 王华, 粱成浩. 腐蚀科学与防护技术, 2004, 16(2), 96. 43 Zhao Y J, Xu J, Wang Q N, et al. Journal of Alloys and Compounds, 2024, 972, 172824. 44 Schatkoski V M, do Amaral Montanheiro T L, de Menezes B R C, et al. Ceramics International, 2021, 47(3), 2999. 45 Yao L T, Al-Bishari A M, Shen J T, et al. Ceramics International, 2023, 49(14), 22961. 46 Jayasree A, Gómez-Cerezo M N, Verron E, et al. Materials Today Advances, 2022, 16, 100297. 47 Ma M, Zhao M L, Deng H Y, et al. Colloids and Surfaces B: Biointerfaces, 2023, 223, 113180. 48 Butler J, Handy R D, Upton M, et al. ACS Nano, 2023, 17(8), 7064. 49 Zhang X Y, Lu S X, He D M, et al. Transactions of Nonferrous Metals Society of China, 2023, 33(8), 2395. 50 Chaturvedi T P. Indian Journal of Dental Research, 2009, 20(1), 91. 51 Matykina E, Arrabal R, Mingo B, et al. Surface and Coatings Technology, 2016, 307, 1255. 52 Nikpour S, Henderson J D, Matin S, et al. Electrochimica Acta, 2024, 475, 143650. 53 Gao J Y, Wang M Y. Journal of Physics and Chemistry of Solids, 2021, 150, 109806. 54 Dillon C P. Materials Performance, 1998, 37(7), 69. 55 Shahmohammadi M, Sun Y, Yuan J C C, et al. Surface and Coatings Technology, 2022, 444, 128686. 56 Costa R C, Abdo V L, Mendes P H C, et al. Journal of Bio-and Tribo-Corrosion, 2021, 7(4), 136. 57 Zhou X, Xu D K, Geng S J, et al. Journal of Materials Research and Technology, 2021, 14, 1459. 58 Bao Y C, Wang W L, Cui W F, et al. Surface and Coatings Technology, 2021, 419, 127296. 59 Joo S Y, Nisar S S, Choe H C. Applied Surface Science, 2024, 681, 161494. 60 Topuz M, Dikici B, Kasapoglu A E, et al. Materials Today Communications, 2024, 40, 110110. 61 Hansson H A, Albrektsson T, Brnemark P I. The Journal of Prosthetic Dentistry, 1983, 50(1), 108. 62 Langer R, Tirrell D A. Nature, 2004, 428(6982), 487. 63 Sun T L, Qing G Y, Su B L, et al. Chemical Society Reviews, 2011, 40(5), 2909. 64 Kong L. Biomechanics optimum design and analysis of dental implant macrostructure in type B/2 bone. Ph. D. Thesis, Air Force Medical University, China, 2007 (in Chinese). 孔亮. B/2类骨质下种植体宏观结构的生物力学优化设计和分析. 博士学位论文, 第四军医大学, 2007. 65 Li X Y, Wu J, Li D X, et al. Bioactive Materials, 2021, 6(9), 2658. 66 Chen C S, Chang J H, Srimaneepong V, et al. Surface and Coatings Technology, 2020, 399, 126125. 67 Wang F F, Li C J, Zhang S, et al. Surface and Coatings Technology, 2020, 382, 125161. 68 Wang Y Y, Bai X X, Li H Z, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142, 105820. 69 Doe Y, Ida H, Seiryu M, et al. Materialia, 2020, 12, 100801. 70 Luo J S, Wu Z H, Dai Y, et al. Surface and Coatings Technology, 2021, 427, 127852. 71 CM S. Applied Osseointegration Research, 2006, 5, 50. 72 Wu T, Zhou Q Y, Hong G Y, et al. Colloids and Surfaces B: Biointerfaces, 2023, 230, 113484. 73 Castner D G, Ratner B D. Surface Science, 2002, 500(1-3), 28. 74 Williams D F. Biomaterials, 2008, 29(20), 2941. 75 Nowicka A, Lipski M, Parafiniuk M, et al. Journal of Endodontics, 2013, 39(6), 743. 76 Gong V, França R. Journal of Dentistry, 2017, 58, 11. 77 Wu C, Zhang C, Yan X Y, et al. Surface and Coatings Technology, 2023, 468, 129746. 78 Zhang S Y, Fang K, Ye F F, et al. Applied Surface Science, 2025, 682, 161596. |
|
|
|