| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress of Tungsten and Tungsten Alloy Matrix Hot Cathode |
| YUAN Zhiqian1,2,3, ZHOU Zenglin1,2,3,*, LI Yan2, HE Xueliang2, CHEN Wenshuai1,2,3, ZHANG Wanting1,2,3
|
1 State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China 2 GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China 3 General Research Institute for Non-ferrous Metals, Beijing 100088, China |
|
|
|
|
Abstract Thermal electron emission has been studied more than 100 years, recently, the rapid development of electronic devices has led to a cathodic demand surge with enhanced emission properties (such as higher current density, more uniform launch, lower operating temperature and longer service life). This paper reviews the research progress of the thermionic cathode in recent decades, and the relationship between the emission characteristics and composition, structure, and method of diffusion cathode is discussed in detail. The advantages and disadvantages of matrix preparation methods such as solid-solid doping, solid-liquid doping, liquid-liquid doping and spray drying are introduced, and their effects on cathode emission performance are summarized in the same. In addition, the emission mechanism of barium tungsten cathode, coating cathode, mixed-matrix cathode, and scandium cathode, as well as the latest research results in this field have been showed, where the scandium cathode, especially the mixed-matrix top-layer scandium cathode, is considered to be the most valuable cathode due to its outstanding emission perfor-mance. Despite the variety of manufacturing methods, there are still challenges in manufacturing a cathode matrix with high uniformity and high reliability suitable for diffusion cathodes. The microstructure evolution of tungsten alloy matrix during the emission process is unclear, and the explaining of the emission mechanism has limitations, all of which need to be explored and expanded.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Shang J, Yang X, Wang Z, et al. IEEE Transactions on Electron Devices, 2020, 67(6), 2580. 2 Roquais J M, Vancil B, Green M. Modern Developments in Vacuum Electron Sources, 2020, 135, 33. 3 Gao J Y, Chu F H, Wang J S, et al. Applied Surface Science, 2022, 581, 1. 4 Zheng Q, Zheng H, Ya F L, et al. Ceramics International, 2021, 47(2), 1. 5 Liu X T, Vancil B K, Beck M J, et al. Materials, 2019, 12(4), 636. 6 Lemmens H, Jansen M, Loosjes R. Phillips Technical Review, 1950, 11(12), 341. 7 Zhou Z L, He X L, Li Y, et al. Rare Metal Materials and Engineering, 2019, 48(7), 2386(in Chinese). 周增林, 何学良, 李艳, 等. 稀有金属材料与工程, 2019, 48(7), 2386. 8 Liu J C, Shao W S, Zhang K. Acta Electronica Sinica, 2023, 51(7), 1977(in Chinese). 刘继琛, 邵文生, 张珂. 电子学报, 2023, 51(7), 1977. 9 Levi R. Journal of Applied Physics, 1955, 26(5), 639. 10 Shang J H, Yang X Y, Sun D P, et al. Acta Physica Sinica, 2022, 71(4), 10(in Chinese). 尚吉花, 杨新宇, 孙大鹏, 等. 物理学报, 2022, 71(4), 10. 11 Cui Y T, Wang J S, Liu W. Journal of Beijing University of Technology, 2013, 39(9), 1420(in Chinese). 崔云涛, 王金淑, 刘伟. 北京工业大学学报, 2013, 39(9), 1420. 12 Zhang H W, Bai Z G, Yu S J, et al. Vacuum Electronic Technology, 2002(3), 70(in Chinese). 张红卫, 白振纲, 俞世吉, 等. 真空电子技术, 2002(3), 70. 13 Zalm P, Vanstrat A. Philips Technical Review, 1966, 27(3-4), 69. 14 Cortenraad H R. Applied Surface Science, 2000, 191(1), 153. 15 Wang J, Yang Y, Wang Y, et al. Tungsten, 2019, 1(1), 91. 16 Kapustin V I, Li I P, Moskalenko S O, et al. Inorganic Materials-Applied Research, 2021, 12(5), 1175. 17 Liu Y, Zhang M, et al. Applied Surface Science, 2005, 251(1), 133. 18 Swartzentruber P D, Detisch M J, Balk T J. Journal of Vacuum Science & Technology A, 2015, 33(2), 12. 19 Jian J W, Jing L L, Yong B F, et al. Journal of Materials Science Materials in Electronics, 2018, 29(19), 1. 20 Zhang R, Wang X, Luo J. In: Conference Record of the 2023 24th International Vacuum Electronics Conference (IVEC). Chengdu, China, 2023, pp. 1. 21 Shen C Y, Qiu T, Li X Y. Materials Reports, 2005, 19(3), 25(in Chinese). 沈春英, 丘泰, 李晓云. 材料导报, 2005, 19(3), 25. 22 Falce L R. In: Conference Record of the 1983 Electron Devices Meeting. Washington, USA, 1983, pp. 448. 23 Fang H X, Liu W, Yang Y F, et al. Rare Metal Materials and Engineering, 2024, 53(6), 1718. 24 Lai C, Wang J, Zhou F, et al. Applied Surface Science, 2018, 427, 874. 25 Wang C J. Research on mixed metal based cathodes. Master’s Thesis, Tsinghua University, China, 2010 (in Chinese). 王传璟. 混合金属基阴极的研制. 硕士学位论文, 清华大学, 2010. 26 Yin S Y, Ren F, Lu Z P, et al. Journal of Electronics & Information Technology, 2018, 40(10), 2535. 27 Zhou F, Chen L, Wang X, et al. In: Conference Record of the 2015 IEEE International Vacuum Electronics Conference (IVEC). Beijing, China, 2015, pp. 1. 28 Seif M N, Zhou Q F, Liu X T, et al. IEEE Transactions on Electron Devices, 2022, 69(7), 3523. 29 Wang M H, Hu K, Wu R J, et al. Advanced Powder Technology, 2024, 34(9), 103. 30 Gao J Y, Liu P, Wang J S, et al. Acta Materialia, 2023, 261, 18. 31 Zhang R Q, Wang X X, Ren F. IEEE Transactions on Electron Devices, 2024, 29(7), 1983. 32 Avraam I F, Anna I S, Irina V J. U. S. patent, US3358178A, 1967. 33 Stratum A J A V, Os J G V, Blatter J R, et al. U. S. patent, US04007393A, 1977. 34 Hasker J, Esdonk J V, Crombeen J E. Applied Surface Science, 1986, 26(2), 173. 35 Yamamoto S, Sasaki S, Taguchi S, et al. Applied Surface Science, 1988, 33(4), 1200. 36 Gartner G, Geittner P, Lydtin H, et al. Applied Surface Science, 1997, 111(2), 11. 37 Cheng Y, Sun Y, Zhou Y Z. Journal of Refractory Metals and Hard Materials, 2022, 105(4), 4363. 38 Wang Y M, Wang J, Liu W, et al. IEEE Transactions on Electron Devices, 2007, 54(5), 1061. 39 Yin S Y, Lyu X P, Ren F, et al. Journal of Electronics & Information Technology, 2021, 43(10), 3058(in Chinese). 阴生毅, 吕昕平, 任峰, 等. 电子与信息学报, 2021, 43(10), 3058. 40 Wang X R, Wei S Z, Zhang C, et al. Journal of Materials Science, 2024, 59(4), 1635. 41 Liu X T, Vancil, B K, Durham D B, et al. IEEE Transactions on Electron Devices, 2023, 70(6), 2876. 42 Yu X B, Xiao J, Guo S Y, et al. Nonferrous Metals Science and Engineering, 2021, 12(3), 35(in Chinese). 喻相标, 肖杰, 郭少毓, 等. 有色金属科学与工程, 2021, 12(3), 35. 43 Seif M, Balk T J, Beck M J. In: Conference Record of the 23st IEEE International Conference on Vacuum Electronics (IVEC). Monterey, 2022, pp. 161. 44 Gu X. Study on a new scandium containing diffusion cathode. Master’s Thesis, Beijing University of Technology, China, 2005(in Chinese). 古昕. 新型含钪扩散阴极的研究. 硕士学位论文, 北京工业大学, 2005. 45 Zhu K, Jia H, Huang J, et al. Metals, 2024, 14(4), 427. 46 Zhu X C, Wang Y M, Liu W, et al. Journal of Vacuum Science and Technology, 2015, 35(12), 1431(in Chinese). 朱晓策, 王亦曼, 刘伟, 等. 真空科学与技术学报, 2015, 35(12), 1431. 47 Wang C N, Zhou X Y, Jiang T Q, et al. IEEE Transactions on Electron Devices, 2024, 28, 460. 48 Bai H H, Briot N J, Beck M J, et al. Materials Characterization, 2024, 212, 19. 49 Vancil B, Ohlinger W L, Green M C, et al. IEEE Transactions on Electron Devices, 2018, 65(6), 1. 50 Zhao J, Gamzina D, Li N, et al. IEEE Transactions on Electron Devices, 2012, 59(6), 1792. 51 Pagaud F, Dolique V, Claire N, et al. Plasma Sources Science & Technology, 2023, 32(11), 1361. 52 Wang J S, Zhou M L. Electronic emission materials, Beijing Institute of Technology Press, China, 2008, pp. 9 (in Chinese). 王金淑, 周美玲. 电子发射材料, 北京工业大学出版社, 2008, pp. 9. 53 Wang J S, Zhou M L. Electronic emission materials, Beijing Institute of Technology Press, China, 2008, pp. 29 (in Chinese). 王金淑, 周美玲. 电子发射材料, 北京工业大学出版社, 2008, pp. 29. 54 Alsoud A, Mousa M S, Abuamr A M, et al. Jordan Journal of Physics, 2024, 17(2), 187. 55 Zhang X, Hua Y, Wang J, et al. IEEE Transactions on Electron Devices, 2022, 68(2), 829. 56 Jacobs R, Morgan D, Booske J. APL Materials, 2017, 5(11), 1. 57 Gartner G. Vacuum on Forschung Und Praxis, 2022, 34(1), 24. 58 Liu W, Hu Z K, Li S L, et al. Powder Metallurgy Technology, 2023, 41(3), 199. 59 Muller W. In: Conference Record of the 1991 International Electron Devices Meeting. Washington, 1991, pp. 399. 60 Balk, John T, Beck, et al. Journal of Vacuum Science & Technology A:Vacuum Surfaces & Films, 2017, 35(2), 1. 61 Li W C, Roberts S, Balk T J. In: Conference Record of the 10th IEEE International Vacuum Electronics Conference. Angelicum University, 2009, pp. 177. 62 Shang J H, Yang X Y, Sun D P, et al. IEEE Transactions on Plasma Science, 2022, 50(4), 1076. 63 Ao B, Zheng Q, Yan R, et al. In: Conference Record of the 2023 24th International Vacuum Electronics Conference (IVEC). Chengdu, China, 2023, pp.1. 64 Liu W, Li J H, Wang J S, et al. Rare Metal Materials and Engineering, 2020, 49(5), 1766. 65 Raju R S, Maloney C E. IEEE Transactions on Electron Devices, 1994, 41(12), 2460. 66 Wang M H, Hu K, Wu R J, et al. Advanced Powder Technology, 2023, 34(9), 1350. 67 Wright D A, Woods J. Proceedings of the Physical Society Section B, 1952, 65(2), 134. 68 Jacobs R M, Booske J H. Physical Review B, 2012, 86(5), 122. 69 Liu X T, Zhou Q F, Maxwell T L, et al. Materials Characterization, 2018, 148, 188. 70 Roquais J M, Vancil B, Green M. Topics in Applied Physics, 2020, 135, 33. 71 Wang J S, Cui Y T, Liu W, et al. IEEE Transactions on Electron Devices, 2015, 62(5), 1635. 72 Mantica A M, Detisch M J, Balk T J, et al. IEEE Transactions on Electron Devices, 2023, 70(6), 2864. 73 Maloney C E, Zhang H L. Applications of Surface Science, 1985, 21(5), 15. 74 Zhou S X, Liang S S, Guo Y C, et al. Materials Characterization, 2023, 195(5), 15. 75 Lesny G, Forman R. IEEE Transactions on Electron Devices, 2010, 37(12), 2595. 76 Mroz M V, Kordesch M E, Sadowski J T, et al. Journal of Vacuum Science and Technology B, 2020, 38(2), 161. 77 Gartner G. Journal of Surface Science and Nanotechnology, 2024, 22(2), 179. 78 Seif M N, Balk T J, Beck M J. Materials, 2022, 13(22), 5149. 79 Kordesch M E, Vaughn J M, Wan C, et al. Journal of Vacuum Science & Technology B, 2022, 29(4), 4. |
|
|
|