| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Mechanism Study on the Effect of V Microalloying on the Welding Performance of Q355 Steel Under Different Heat Inputs |
| JIANG Chunhui1,2, LI Zhaodong2, GAO Bo2, ZHU Lu2, WANG Yinpeng1,2, WEI Wei1,*
|
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China 2 Institute for Structural Steels, Central Iron & Steel Research Institute Company Limited, Beijing 100081, China |
|
|
|
|
Abstract The effect of V microalloying on the welding performance of Q355 steel at different heat inputs was investigated using advanced characterization techniques, including thermo-mechanical simulator (Gleeble), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The results show that under a welding heat input of 40—100 kJ/cm, the addition of 0.03% V adversely affects the low-temperature impact toughness of the steel. When the heat input is 20 kJ/cm, the addition of 0.03% V improves the low-temperature impact toughness at -40 ℃ by 15.3 J. Detailed analysis shows that at a heat input of 40—75 kJ/cm, the addition of 0.03% V suppresses the formation of acicular ferrite, while at a heat input of 100 kJ/cm, it leads to abnormally coarse grains in the experimental steel, significantly deteriorating impact toughness. At a heat input of 20 kJ/cm, the addition of 0.03% V enhances the hardenability of the steel. The pinning effect of MC particles on austenite grain boundaries refines austenite grains, facilitating the nucleation and growth of martensite. This contributes to a more dispersed distribution of M/A islands, reducing the likelihood of M/A islands at grain boundaries becoming crack initiation sites. Moreover, at a heat input of 20 kJ/cm, the presence of numerous fine MC particles in the heat-affected zone (HAZ) increases the precipitation strengthening contribution (σp), significantly enhancing the hardness of the HAZ and achieving an optimal balance between strength and toughness.
|
|
Published: 25 November 2025
Online: 2025-11-14
|
|
|
|
|
1 Metallurgical Industry Information Standards Research Institute. China Metallurgical News, DOI:10.28153/n.cnki.ncyjb.2024.002071 (in Chinese). 冶金工业信息标准研究院. 中国冶金报, DOI:10.28153/n.cnki.ncyjb.2024.002071. 2 Zhao P. China Metallurgical News, DOI:10.28153/n.cnki.ncyjb.2024.002219 (in Chinese). 赵萍. 中国冶金报, DOI:10.28153/n.cnki.ncyjb.2024.002219. 3 Jia L H. China Metallurgical News, DOI:10.28153/n.cnki.ncyjb.2024.002169 (in Chinese). 贾林海. 中国冶金报, DOI:10.28153/n.cnki.ncyjb.2024.002169. 4 Pu C L, Jiang Y, Yan D X, et al. Transactions of Materials and Heat Treatment, 2023, 44(7), 99(in Chinese). 蒲春雷, 姜嫄, 闫洞旭, 等. 材料热处理学报, 2023, 44(7), 99. 5 Wang S. Effect of Nb and V microalloying on the microstructure and impact toughness of CGHAZ welded P460NL1 steel. Master's Thesis, Yanshan University, China, 2022 (in Chinese). 王松. Nb、V微合金化对P460NL1钢焊接CGHAZ组织和冲击韧性的影响. 硕士学位论文, 燕山大学, 2022. 6 Hannerz N E. Welding Journal, 1975, 54(5), 162. 7 Das S, Karmakar A, Singh S B. High-performance ferrous alloys, Springer Nature Switzerland, 2021, pp.83. 8 Hu J, Du L X, Zang M, et al. Materials Characterization, 2016, 118, 446. 9 Gao Z Z, Chen X Y, Wang Y J, et al. Heat Treatment of Metals, 2022, 47(8), 163 (in Chinese). 高志喆, 陈小艳, 王永金, 等. 金属热处理, 2022, 47(8), 163. 10 Shi Z, Yang C, Wang R, et al. Materials Science and Engineering:A, 2016, 649, 270. 11 Liu Z H. Welding & Joining, 2007(9), 46 (in Chinese). 刘作辉. 焊接, 2007(9), 46. 12 Zhou J L, Huang G, Xiang S, et al. Special Steel, 2014, 35(3), 49(in Chinese). 周家林, 黄高, 向上, 等. 特殊钢, 2014, 35(3), 49. 13 Zhang J W, Li H J, Feng Z Z, et al. Welding & Joining, 2017(11), 58(in Chinese). 张笈玮, 李宏佳, 冯忠志, 等. 焊接, 2017(11), 58. 14 Yang Y H, Yuan S Q, Wu D, et al. Heat Treatment of Metals, 2019, 44(12), 132(in Chinese). 杨跃辉, 苑少强, 吴迪, 等. 金属热处理, 2019, 44(12), 132. 15 Wen T, Hu X, Song Y, et al. Materials Science and Engineering:A, 2013, 588, 201. 16 Hyzak J M, Bernstein I M. Metallurgical Transactions A, 1976, 7, 1217. 17 Farrar R A, Harrison P L. Journal of Materials Science, 1987, 22(11), 3812. 18 Xiao F R, Liao B, Ren D L, et al. Materials Characterization, 2005, 54(4-5), 305. 19 Tweed J H, Knott J F. Acta Metallurgica, 1987, 35(7), 1401. 20 Meester B D. ISIJ International, 1997, 37(6), 537. 21 Wang X N, Zhao Y J, Guo P F, et al. Journal of Materials Engineering and Performance, 2019, 28, 1810. 22 Qian Weifang. Baosteel Technology, 2021(6), 1 (in Chinese). 钱伟方. 宝钢技术, 2021(6), 1. 23 Thompson A W, Knott J F. Metallurgical Transactions A, 1993, 24, 523. 24 Bayraktar E, Kaplan D. Journal of Materials Processing Technology, 2004, 153, 87. 25 Bhadeshia H K D H, Christian J W. Metallurgical Transactions A, 1990, 21, 767. 26 Liu F F, Fu K J, Wang J J, et al. Shanghai Metal, 2018, 40(2), 7(in Chinese). 刘芳芳, 付魁军, 王佳骥, 等. 上海金属, 2018, 40(2), 7. |
|
|
|