| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress on the Corrosion Resistance of 6xxx Aluminium Alloys |
| XIE Miao1, FU Junwei3,*, ZHAO Maomi2, LU Zhao1
|
1 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China 2 Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China 3 Key Laboratory of Marine Environmental Corrosion and Bio-fouling, State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China |
|
|
|
|
Abstract 6xxx aluminum alloys are widely used in automobile industry, construction industry, shipbuilding and other fields because of their advantages such as low cost, good corrosion resistance and excellent mechanical properties. In this paper, the latest research progress of corrosion resistance of 6xxx series aluminum alloys was reviewed in terms of alloying and heat treatment. Firstly, the main factors affecting the corrosion resistance of 6xxx series aluminum alloy, including aging treatment, m(Mg)/m(Si) ratio and Cu content, total m(Mg+Si) content, were discussed. In artificial aging, the sensitivity of intergranular corrosion increases with the extension of aging time. During interrupted aging and non-isothermal aging, the coarsening and discretization of needle-like β phase and the discontinuous distribution of precipitation-free zone at grain boundary improve the corrosion resistance of the alloy. Under the same aging conditions, intergranular corrosion of Cu-containing alloys is more serious than that of the alloys without Cu addition. With the increase of Cu content, the decrease of m(Mg)/m(Si) ratio and the increase of total m(Mg+Si) content both increase intergranular corrosion gradually. Secondly, the influence of microalloying on the corrosion resistance of 6xxx series aluminum alloys is discussed based on the single alloying and multi-alloying. It is demonstrated that addition of appropriate trace elements can improve the corrosion resistance of the alloys. Finally, a brief summary is made, and suggestions and prospects for the future development of 6xxx series aluminum alloys are put forward.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Miller W S, Zhuang L, Bottema J, et al. Materials Science and Engineering, 2000, 280, 37. 2 Hung N, Marion M. Reports on Progress in Physics, 2012, 39, 318. 3 Knight S P, Pohl K, Holroyd N J H, et al. Corrosion Science, 2015, 98, 50. 4 Zhou B, Wang Y, Zuo Y. Applied Surface Science, 2015, 357, 735. 5 Liang W J, Rometsch P A, Cao L F, et al. Corrosion Science, 2013, 76, 119. 6 Svenningsen G, Lein J E, Bjorgum A, et al. Corrosion Science, 2006, 48, 226. 7 Minoda T, Yoshida H. Metallurgical and Materials Transactions A, 2002, 33, 2891. 8 Fleming K M, Zhu A, Scully J R. Corrosion, 2012, 68, 1126. 9 Eckermann F, Suter T, Uggowitzer P J, et al. Corrosion Science, 2008, 50, 3455. 10 Marioara C D, Andersen S J, Jansen J, et al. Acta Materialia, 2001, 49, 321. 11 Matsuda K, Teguri D, Sato T, et al. Materials Transactions, 2007, 48, 967. 12 Matsuda K, Teguri D, Uetani Y, et al. Scripta Materialia, 2002, 47, 833. 13 Ringer S P, Hono K. Materials Characterization, 2000, 44, 101. 14 Jiang S, Jiang Y, Wang R. Journal of Materials Science & Technology, 2019, 35(70), 1354. 15 Zheng Y, Luo B, Bai Z, et al. Acta Materialia, 2017, 7(10), 387. 16 Li J H, An Z H, Fredrik S H, et al. Materials Science and Engineering: A, 2019, 760, 366. 17 Kisasoz A. Materials Testing, 2018, 60, 478. 18 Zheng Y, Luo B, He C, et al. Materials Research Express, 2019, 6, 116582. 19 Svenningsen G, Lein J E, Bjørgum A, et al. Corrosion Science, 2006, 48(1), 226 20 Kairy S K, Rometsch P A, Davies C H J, et al. Corrosion, 2025, 71(11), 1304. 21 Zou Y, Liu Q, Jia Z, et al. Applied Surface Science, 2017, 405, 489. 22 Aluru Praveen Sekhar, Ashim Bikash Mandal, Debdulal Das. Journal of Materials Research and Technology, 2020, 9(1), 1005. 23 Tabrizi M R, Lyon S B, Thompson G E, et al. Corrosion Science, 1991, 32(7), 733. 24 Aluru Praveen Sekhar, Ashim Bikash Mandal, Debdulal Das. Metals and Materials International, 2021, 27, 5059. 25 El-Menshawy K, El-Sayed A W A, El-Bedawy M E, et al. Corrosion Science, 2012, 54, 167. 26 Sekhar A P, Das D. Materials and Corrosion, 2019, 70(11), 2052. 27 Schnatterer C, Altenbach C, Zander D. Materials and Corrosion, 2019, 70(7), 1205. 28 Lumley R N, Polmear I J. Materials Science and Technology, 2005, 9, 1025. 29 Buha J, Lumley R N, Crosky A G. The Philosophical Magazine A Journal of Theoretical Experimental and Applied Physics, 2008, 88(3), 373. 30 Risanti D D, Yin M, Zwaag S V D. Materials Science and Engineering: A, 2009, 523(1), 99. 31 Buha J, Lumley R N, Crosky A G. Metallurgical and Materials Transactions A, 2006, 37(10), 3119. 32 Buha J, Lumley R N, Crosky A G. Acta Materialia, 2007, 55(9), 3015. 33 Xu Xuehong, Deng Yunlai, Chi Shuiqing, et al. Journal of Materials Research and Technology, 2020, 9(1), 230. 34 Xu Xuehong, Deng Yunlai, Pan Qinglin, et al. Metallurgical and Materials Transactions, 2021, 52, 4907. 35 Guo R, Zhang C, Liu M, et al. Materials Characterization, 2020, 169, 110613. 36 Zhang X, Tang J, Li H, et al. Journal of Alloys and Compounds, 2020, 819, 152960. 37 Guo Cheng, Wang Huan, Guo Yuqin, et al. Corrosion Science, 2024, 229, 111878. 38 Zhou Yuan, Ji Qingqing, Jin Man. Materials and Corrosion, 2018, 60(5), 634. 39 Zheng Y Y, Luo Binghui, Wang Shuai, et al. Materials Science and Engineering, 2019, 562, 012064. 40 Zheng Y Y, Luo B H, He C, et al. Physics of Metals and Metallography, 2020, 121(13), 1295. 41 Hamed Jamshidi Aual. Transactions of Nonferrous Metals Society of China, 2024, 34(2), 408. 42 Man J, Jing L, Jie S G. Journal of Alloys and Compounds, 2007, 437, 146. 43 Ding L, Jia Z, Nie J, et al. Acta Mater, 2018, 145, 437. 44 Marioara C D, Andersen S J, Stene T N, et al. Philosophical Magazine, 2007, 87 (23), 3385. 45 Marioara C D, Andersen S J, Zandbergen H W, et al. Metallurgical and Materials Transactions A, 2005, 36, 691. 46 Bahrami A, Miroux A, Sietsma J. Metallurgical and Materials Transactions A, 2012, 43 (11), 4445. 47 Ehlers F J H, Wenner S, Andersen S J, et al. Journal of Materials Science, 2014, 49 (18), 6413. 48 Zou Yun, Liu Qing, Jia Zhihong, et al. Applied Surface Science, 2017, 405, 489. 49 Kairy S K, Rometsch P A, Davies C H J, et al. Corrosion, 2017, 73(10), 1280. 50 Gupta A K, Lloyd D J, Court S A. Materials Science and Engineering A, 2001, 316, 11. 51 Mukhopadhyay P. ISRN Metall, 2012, 15, 165082. 52 Zhong H, Rometsch P A, Estrin Y. Metallurgical and Materials Transactions A, 2013, 44 (8), 3970. 53 Wang Jiao, Luo Binghui, Zheng Yaya, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(6), 1091(in Chinese). 王姣, 罗兵辉, 郑亚亚, 等. 中国有色金属学报, 2017, 27(6), 1091. 54 Yang Zhao, Fu Jiani, Xu Xuexuan, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(6), 1617(in Chinese). 杨昭, 付嘉妮, 徐雪璇, 等. 中国有色金属学报, 2022, 32(6), 1617. 55 Ren Zhiwei, Luo Binghui, Zheng Yaya, et al. Materials Reports, 2019, 33(18), 3072(in Chinese). 任智炜, 罗兵辉, 郑亚亚, 等. 材料导报, 2019, 33(18), 3072. 56 Hou D D, Shan J Q, Cao G H, et al. Heat Treatment of Metals, 2017, 42(10), 209. 57 Jin Man, Kuang Xiuqin, Ji Qingqing, et al. Shanghai Metals, 2019, 41(4), 54(in Chinese). 金曼, 匡秀琴, 季清清, 等. 上海金属, 2019, 41(4), 54. 58 Kairy S K, Rouxel B, Dumbre J, et al. Corrosion Science, 2019, 158, 108095. 59 Wang Y, Gupta R K, Sukiman N L, et al. Corrosion Science, 2013, 73, 181. 60 Zou Y, Yan H, Yu B, et al. Intermetallic, 2019, 110, 106487. 61 Sun F, Nash G L, Li Q, et al. Journal of Material Science and Technology, 2017, 33, 1015. 62 Wu S H, Zhang P, Shao D, et al. Materials Science and Engineering A, 2018, 721, 200. 63 Liu Zhu, Sun Yuchong, Hou Zhonglin, et al. Materials Reports, 2024, 38(15), 60(in Chinese). 刘柱, 孙玉崇, 侯忠霖, 等. 材料导报, 2024, 38(15), 60. 64 Wang Xiaolu, Zhao Yutao, Jiao Lei, et al. Materials Reports, 2017, 31(18), 72(in Chinese). 王晓璐, 赵玉涛, 焦雷, 等. 材料导报, 2017, 31(18), 72. 65 Jia Zhihong, Weng Yaoyao, Ding Lipeng, et al. Materials Reports, 2017, 31(9), 123(in Chinese). 贾志宏, 翁瑶瑶, 丁立鹏, 等. 材料导报, 2017, 31(9), 123. 66 Marion Werinos, Helmut Antrekowitsch, Thomas EbnerH, et al. Acta Materialia, 2016, 118, 296. 67 Marion Werinos, Helmut Antrekowitsch, Ernst Kozeschnik, et al. Scripta Materialia, 2015, 112, 148. 68 Liu C, Ma P, Zhan L, et al. Scripta Materialia, 2018, 155, 68. 69 Wei Manxiang, Gao Sirui, Liu Hongliang, et al. Materials Reports, 2021, 35(S1), 311(in Chinese). 魏满想, 高思睿, 刘宏亮, 等. 材料导报, 2021, 35(S1), 311. 70 Maria N, Derek P, Robert J K W, et al. Journal of Power Sources, 2008, 178 (1), 445. 71 Liu X Y, Li M J, Gao F, et al. Journal of Alloys and Compounds, 2015, 639, 263. 72 He Chuan, Luo Binghui, Zheng Yaya, et al. Materials Characterization, 2019, 156, 109836. 73 Weng Yaoyao, Xu Yaqi, Ding Lipeng, et al. Materials Characterization, 2021, 179, 111383. 74 Lu Gang, Sun Bo, Wang Jianjun, et al. Journal of Materials Research and Technology, 2021, 14, 2165. 75 Changkyu K, Seongkoo C, Wonseog Y, et al. Corrosion Science, 2021, 183, 109339. 76 Xu P, Jiang F, Tang Z, et al. Journal of Alloys and Compounds, 2019, 781, 209. 77 Wang R, Jiang S, Chen B, et al. Journal of Materials Science & Technology, 2020, 57, 78. 78 Zandbergen H W, Andersen S J, Jansen J. Science, 1997, 277, 1221. 79 Wenner S, Jones L, Marioara C D, et al. Micron, 2017, 96, 103. 80 Andersen S J, Marioara C D, Frøseth A, et al. Materials Science and Engineering A, 2005, 390, 127. 81 Liu Y, Lai Y X, Chen Z Q, et al. Journal of Alloys and Compounds, 2021, 885, 160942. 82 Vissers R, van Huis M A, Jansen J, et al. Acta Materialia, 2007, 55 (11), 3815. 83 Chen H, Lu J, Kong Y, et al. Acta Materialia, 2020, 185, 193. 84 Wang S B, Pan C F, Wei B, et al. Journal of Materials Science & Technology, 2022, 110, 216. 85 Wei Bo, Pan Shuai, Liao Guizhen, et al. Materials & Design, 2022, 218, 110699. 86 Huang X, Pan Q, Li B, et al. Journal of Alloys and Compounds, 2015, 650, 805. 87 Hosseinifar M, Malakhov D V. Journal of Materials Science, 2008, 43(22), 7157. 88 Yuan W H, Liang Z Y, Zhang C Y, et al. Materials & Design, 2012, 34, 788. 89 Zheng Qiuju, Wu Jing, Jiang Hongxiang, et al. Corrosion Science, 2021, 179, 109113. 90 Arthanari S, Jang J C, Shin K S. Journal of Alloys and Compounds, 2019, 783, 494. 91 Eckermann F, Suter T, Uggowitzer P J, et al. Electrochimica Acta, 2008, 54 (2), 844. 92 Ly R, Karayan A I, Hartwig K T, et al. Electrochimica Acta, 2019, 308, 35. 93 Orłowska M, Ura-Bi′nczyk E, Olejnik L, et al. Corrosion Science, 2019, 148, 57. 94 Pan S, Chen X J, Liao G Z, et al. Rare Metals, 2023, 42(11), 3814. 95 He C, Luo B, Zheng Y, et al. Materials Characterization, 2019, 156, 109836. 96 Zheng Dehui, Li Jiahai, Wei Bo, et al. Journal of Materials Research and Technology, 2023, 27, 472. 97 Liao H C, Liu Y, Lü C L, et al. International Journal of Cast Metals Research, 2015, 28 (4), 213. 98 Dorin T, Ramajayam M, Babaniaris S, et al. Materialia, 2019, 8, 100437. 99 Wang R, Jiang S, Chen B, et al. Journal of Materials Science & Technology, 2020, 57, 78. 100 Bochvar N R, Rybalchenko O V, Leonova N P, et al. Journal of Alloys and Compounds, 2020, 821, 153426. 101 Wang Weiyi, Pan Qinglin, Wang Xiangdong, et al. Corrosion Science, 2024, 226, 111695. |
|
|
|