METAMATERIALS FOR MANIPULATING LIGHT & HEAT:APPLICATIONS AND INNOVATIONS |
|
|
|
|
|
Advances in Polarization Detectors Based on Metasurfaces |
ZHAO Xiangrui1,2,3, SUN Feiying2,3, PENG Yang2,3, LOU Taiming1,2,3, ZHANG Xianning1,2,3, ZHANG Hongchen1,2,3, WEI Xingzhan2,3,*
|
1 School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China 2 Micro-and Nano-Fabrication and System Integration Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China 3 School of Intelligent Manufacturing, Chongqing School, University of Chinese Academy Sciences, Chongqing 400714, China |
|
|
Abstract Polarization detection technology is a vital optical sensing method characterized by its strong anti-interference capabilities and its effectiveness in enhancing detection range. It plays a significant role in various fields, including optical remote sensing, environmental monitoring, biomedicine, and underwater imaging. However, traditional polarization detection systems encounter challenges, such as bulky size and complex optical paths, which create substantial obstacles for miniaturization and integration. Metasurfaces, comprised of two-dimensional periodic arrays of artificially subwavelength elements, enable precise manipulation of optical fields according to the polarization states of incident light. This capability effectively reduces the size of polarization detection systems while enhancing device integration, offering innovative solutions for miniaturized polarization detection. This review analyzes the optical field manipulation mechanisms related to polarization detection and summarizes photon and photothermal polarization detectors based on metasurfaces. Additionally, it discusses existing challenges and future trends, aiming to provide valuable insights for further research in this field.
|
Published: 10 January 2025
Online: 2025-01-10
|
|
|
|
1 Zhou X, Qiu C, Sun J, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254, 107182. 2 Omer K, Kupinski M. Optics Express, 2022, 30(14), 25734. 3 Natsume H, Nojiri K, Kajita S, et al. Plasma and Fusion Research, 2022, 17, 2405041. 4 Zhang Y, Sun J, Qiu R, et al. Sensors, 2021, 21(13), 4418. 5 Tyo J S, Goldstein D L, Chenault D B, et al. Applied Optics, 2006, 45(22), 5453. 6 Yan L, Li Y, Chandrasekar V, et al. International Journal of Remote Sensing, 2020, 41(13), 4853. 7 Talmage D A, Curran P J. International Journal of Remote Sensing, 1986, 7(1), 47. 8 Yan L, Wu T, Wang X. Understanding of atmospheric systems with efficient numerical methods for observation and prediction, IntechOpen London, UK, 2018, pp. 165. 9 Zhu Y, Zeng T, Liu K, et al. Optics Express, 2021, 29(25), 41865. 10 Yongqiang Z, Huimin D, Linghao S, et al. Infrared and Laser Engineering, 2020, 49(6), 20190571. 11 Wang H, Hu H, Jiang J, et al. Optics Express, 2021, 29(20), 31283. 12 Yu T, Wang X, Xi S, et al. Optics Express, 2022, 31(1), 459. 13 Reppert S M, Zhu H, White R H. Current Biology, 2004, 14(2), 155. 14 Pomozi I, Horváth G, Wehner R. Journal of Experimental Biology, 2001, 204(17), 2933. 15 Lambrinos D, Möller R, Labhart T, et al. Robotics and Autonomous Systems, 2000, 30(1-2), 39. 16 Brines M L, Gould J L. Journal of Experimental Biology, 1982, 96(1), 69. 17 Ding Z, Liang C, Chen Y. Frontiers of Optoelectronics, 2015, 8, 128. 18 Tuchin V V. Journal of Biomedical Optics, 2016, 21(7), 71114. 19 Polavarapu P L, Chen G, Deng Z. Applied Spectroscopy, 1994, 48(11), 1403. 20 Louie D C, Phillips J, Tchvialeva L, et al. Journal of Biomedical Optics, 2018, 23(12), 125004. 21 De Boer J F, Milner T E. Journal of Biomedical Optics, 2002, 7(3), 359. 22 Wang Y, Su Y, Sun X, et al. Applied Sciences, 2022, 12(13), 6613. 23 Meng X, Li J, Song H, et al. Applied Optics, 2014, 53(24), 5275. 24 Peinado A, Lizana A, Vidal J, et al. Applied Optics, 2011, 50(28), 5437. 25 Liu H, Zhong W, Yun T, et al. Remote sensing image processing, geographic information systems, and other applications, SPIE, 2020, pp. 234. 26 Peinado A, Turpin A, Lizana A, et al. Optics Letters, 2013, 38(20), 4100. 27 Negara C. In: Proceedings of the 2016 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics. Vision and Fusion Laboratory, 2017, pp. 85. 28 Wu Q, Gao L, Cao Y, et al. Photonics Research, 2022, 11(1), 35. 29 Wang Y, Su Y, Sun X, et al. Applied Sciences, 2022, 12(13), 6613. 30 Chen J, Xie H, Yang T, et al. In: Optical Design and Testing XII. SPIE, 2022, pp. 32. 31 Xue Q, Li H, Lu F, et al. Applied Optics, 2024, 63(19), 5107. 32 Iwanaga M. Science and Technology of Advanced Materials, 2012, 13(5), 53002. 33 Hao J, Qiu M, Zhou L. Frontiers of Physics in China, 2010, 5, 291. 34 Oliveri G, Werner D H, Massa A. Proceedings of the IEEE, 2015, 103(7), 1034. 35 Liu W, Li Z, Ansari M A, et al. Advanced Materials, 2023, 35(30), 2208884. 36 Wang J. Chinese Optics Letters, 2018, 16(5), 50006. 37 Hassani Gangaraj S A, Monticone F. Nanophotonics, 2018, 7(6), 1025. 38 Li Y, Lin J, Guo H, et al. Advanced Optical Materials, 2020, 8(6), 1901548. 39 Deng Z, Li G. Materials Today Physics, 2017, 3, 16. 40 Wang S, Wu P C, Su V, et al. Nature Communications, 2017, 8(1), 187. 41 High A A, Devlin R C, Dibos A, et al. Nature, 2015, 522(7555), 192. 42 Fu R, Li Z, Zheng G, et al. Optics Express, 2019, 27(9), 12221. 43 Meinzer N, Barnes W L, Hooper I R. Nature Photonics, 2014, 8(12), 889. 44 Ding F, Wang Z, He S, et al. ACS Nano, 2015, 9(4), 4111. 45 Yang W, Xiao S, Song Q, et al. Nature Communications, 2020, 11(1), 1864. 46 Liang H, Lin Q, Xie X, et al. Nano Letters, 2018, 18(7), 4460. 47 Yoon G, Kim K, Huh D, et al. Nature Communications, 2020, 11(1), 2268. 48 Chen B H, Wu P C, Su V, et al. Nano Letters, 2017, 17(10), 6345. 49 Jiang H, Wei J, Sun F, et al. ACS Nano, 2022, 16(3), 4458. 50 Staude I, Miroshnichenko A E, Decker M, et al. ACS Nano, 2013, 7(9), 7824. 51 Kuznetsov A I, Miroshnichenko A E, Brongersma M L, et al. Science, 2016, 354(6314), 2472. 52 Proust J, Bedu F, Gallas B, et al. ACS Nano, 2016, 10(8), 7761. 53 Pancharatnam S. In: Proceedings of the Indian Academy of Sciences-Section A, Springer India, 1956, pp. 247. 54 Pancharatnam S. In: Proceedings of the Indian Academy of Sciences-Section A, Springer India, 1956, pp. 398. 55 Berry M V. Mathematical and Physical Sciences, 1984, 392(1802), 45. 56 Zhang X, Li X, Jin J, et al. Nanoscale, 2018, 10(19), 9304. 57 Chen J, Hu S, Zhu S, et al. Interdisciplinary Materials, 2023, 2(1), 5. 58 Chen W T, Zhu A Y, Sanjeev V, et al. Nature Nanotechnology, 2018, 13(3), 220. 59 Yu N, Genevet P, Kats M A, et al. Science, 2011, 334(6054), 333. 60 Sun S, Yang K, Wang C, et al. Nano Letters, 2012, 12(12), 6223. 61 Crozier K B, Sundaramurthy A, Kino G S, et al. Journal of Applied Physics, 2003, 94(7), 4632. 62 Hsu L, Baida F I, Ndao A. Optics Express, 2021, 29(2), 1102. 63 Lalanne P, Lemercier-Lalanne D. Journal of Modern Optics, 1996, 43(10), 2063. 64 Zhdanov M. Geophysics, 2008, 73(5), F197. 65 Jin J, Liu S, Lin Z, et al. Physical Review B—Condensed Matter and Materials Physics, 2009, 80(11), 115101. 66 Wang T, Chen G, Zhu J, et al. Journal of Colloid and Interface Science, 2021, 595, 1. 67 Liu T, Caballero J M, Wang Y. Plasmonics, 2024, 19(2), 699. 68 Hou Z, Gao X, Zhang J, et al. Carbon, 2024, 222, 118935. 69 Li M, Wang G, Gao Y, et al. Nanomaterials, 2022, 12(19), 3477. 70 Yan M. Journal of Optics, 2013, 15(2), 25006. 71 Chen C, Wang G, Zhang Z, et al. Optics Letters, 2018, 43(15), 3630. 72 Liu N, Mesch M, Weiss T, et al. Nano Letters, 2010, 10(7), 2342. 73 Hao J, Wang J, Liu X, et al. Applied Physics Letters, 2010, 96(25), 4184. 74 Liu X, Tyler T, Starr T, et al. Physical Review Letters, 2011, 107(4), 45901. 75 Isogun T A, Ni H B. Plasmonics, 2024, 19(2), 663. 76 Nguyen D M, Lee D, Rho J. Scientific Reports, 2017, 7(1), 2611. 77 Yu H, Meng D, Liang Z, et al. Optics Express, 2021, 29(22), 36111. 78 Sekar R, Inabathini S R. Radioengineering, 2018, 27(2), 365. 79 Gruev V, Perkins R, York T. Optics Express, 2010, 18(18), 19087. 80 Afshinmanesh F, White J S, Cai W, et al. Nanophotonics, 2012, 1(2), 125. 81 Zhang J, Guo Z, Li R, et al. Plasmonics, 2015, 10, 1255. 82 Cheng B, Zou Y, Shao H, et al. Optics Express, 2020, 28(19), 27324. 83 Zuo J, Bai J, Choi S, et al. Light: Science & Applications, 2023, 12(1), 218. 84 Jiang H, Fu J, Wei J, et al. Nature Communications, 2024, 15(1), 1225. 85 Wei S, Yang Z, Zhao M. Optics Letters, 2017, 42(8), 1580. 86 Zhang Y, Pu M, Jin J, et al. Opto-Electronic Advances, 2022, 5(11), 220051. 87 Zheng C, Li H, Liu J, et al. Photonics Research, 2024, 12(3), 514. 88 Yang Z, Wang Z, Wang Y, et al. Nature Communications, 2018, 9(1), 4607. 89 Zhang Y, Jin J, Pu M, et al. Physica Status Solidi RRL-Rapid Research Letters, 2020, 14(5), 2000044. 90 Pors A, Nielsen M G, Bozhevolnyi S I. Optica, 2015, 2(8), 716. 91 Shaltout A, Liu J, Kildishev A, et al. Optica, 2015, 2(10), 860. 92 Boroviks S, Acs Photonics, 2017, 5(5), 1648. 93 Ding F, Pors A, Chen Y, et al. ACS Photonics, 2017, 4(4), 943. 94 Khorasaninejad M, Zhu W, Crozier K B. Optica, 2015, 2(4), 376. 95 Khorasaninejad M, Chen W T, Zhu A Y, et al. Nano Letters, 2016, 16(7), 4595. 96 Ren Y, Guo S, Zhu W, et al. Advanced Photonics Research, 2022, 3(7), 2100373. 97 Shah Y D, Dada A C, Grant J P, et al. ACS Photonics, 2022, 9(10), 3245. 98 Liu S, Zhang Z, Cheng J, et al. Photonics, 2023, 10(4), 382. 99 Wei J, Li Y, Wang L, et al. Nature Communications, 2020, 11(1), 6404. 100 Wei J, Chen Y, Li Y, et al. Nature Photonics, 2023, 17(2), 171. 101 Chen M, Wang Y, Zhao Z. ACS Nano, 2022, 16(10), 17263. 102 Wilson N C, Shin E, Bangle R E, et al. Nano Letters, 2023, 23(18), 8547. 103 Jiang S. Multi-modal thermal detectors based on metasurface microbolometers. Ph. D. Thesis, Huazhong University of Science and Techno-logy, China, 2022(in Chinese). 蒋顺. 基于超表面微测辐射热计的多维热探测器研究. 博士学位论文, 华中科技大学, 2022. 104 Seong J, Jeon Y, Yang Y, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2024, 11(2), 685. 105 Leng B, Zhang Y, Tsai D P, et al. Light: Advanced Manufacturing, 2024, 5(1), 117. 106 Shi X, Liang Z, Hou E, et al. Optics Express, 2023, 31(25), 41105. 107 Fu J, Jiang H, Nie C, et al. Nano Letters, 2023, 23(11), 4923. 108 Zhang C, Chen L, Lin Z, et al. Light: Science & Applications, 2024, 13(1), 23. 109 Fu J, Guo Z, Nie C, et al. The Innovation, DOI:10. 1016/j. xinn. 2024. 100600. 110 Fu J, Ji L, Wu Z, et al. Device, DOI:10. 1016/j. device. 2024. 100321. 111 Jiang H, Nie C, Fu J, et al. Nanophotonics, 2020, 9(11), 3663. 112 Jiang H, Wang M, Fu J, et al. ACS Nano, 2022, 16(8), 12777. 113 Fu J, Nie C, Sun F, et al. Science Advances, 2024, 10(7), eadk8199. 114 Li L, Wang J, Kang L, et al. ACS Nano, 2020, 14(12), 16634. 115 Bu Y, Ren X, Zhou J, et al. Light: Science & Applications, 2023, 12(1), 176. 116 Jiang H, Chen Y, Guo W, et al. Nature Communications, 2024, 15(1), 8347. 117 Dong J, Tang L, Wei B, et al. Results in Physics, 2024, 66, 108002. |
|
|
|