| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Status and Prospect of Low-energy Consumption and High-quality Melting Technology for Titanium and Titanium-Aluminum Alloys |
| DANG Qian1, ZHANG Yunfei1, LIU Guohuai1,*, WANG Zhaodong1,*, ZHANG Chi2
|
1 The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
|
|
|
|
Abstract Titanium and titanium-aluminum alloys have gradually become ideal structural materials in the fields of national defense, military industry, and high-end equipment manufacturing due to their high specific strength and excellent corrosion resistance. However, for a long time, because of their energy-intensive and costly melting preparing technologies such as vacuum consumable electrode arc melting and vacuum arc skull mel-ting, these alloys are high price, which has hindered their large-scale application. Crucible-based vacuum induction melting is regarded as a key technology with significant potential for achieving low-energy, high-quality, and cost-effective melting of titanium and titanium-aluminum alloys. This technology holds transformative significance for the green and sustainable development of the titanium industry. However, due to the high chemical reactivity of titanium melts, the development of refractory materials capable of fully meeting the requirements for crucible-based industrial melting of titanium and titanium-aluminum alloys has yet to achieve a complete breakthrough. Therefore, this paper provides a systematic overview of the commonly used melting technologies for titanium and titanium-aluminum alloys, along with the current development status of refractories used in vacuum induction melting crucibles, explores the challenges and issues faced by crucibles in vacuum induction melting and reflects on the future directions of low-energy, high-quality melting technologies for titanium and titanium-aluminum alloys.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Wu C, Zhang S P, Guo H M, et al. Gas Turbine Experiment and Research, 2023, 36(4), 55(in Chinese). 吴晨, 张少平, 郭会明, 等. 燃气涡轮试验与研究, 2023, 36(4), 55. 2 Kaur M, Singh K. Materials Science & Engineering C-Materials for Biological Applications, 2019, 102, 844. 3 Jin B Q, Wang Q, Zhao L, et al. Metals, 2023, 13(8), 1327. 4 An Z S, Chen Y, Zhao W. Progress in Titanium Industry, 2022, 39(4), 34(in Chinese). 安仲生, 陈岩, 赵巍. 钛工业进展, 2022, 39(4), 34. 5 Feng Q, Lv M, Mao L, et al. Metals, 2023, 13(2), 408. 6 Ma Z X, Feng J N, Hu Z J. World Nonferrous Metals, 2016, 41(12), 52(in Chinese). 马忠贤, 冯军宁, 胡志杰. 世界有色金属, 2016, 41(12), 52. 7 Feng Q Y, Tong X W, Wang J, et al. Materials Reports, 2017, 31(9), 128(in Chinese). 冯秋元, 佟学文, 王俭, 等. 材料导报, 2017, 31(9), 128. 8 Qu Y H, Liu Y Q, Zhang J X. Rare Metal Materials and Engineering, 2008, 7(3), 135(in Chinese). 曲银化, 刘茵琪, 张俊旭. 稀有金属材料与工程, 2008, 7(3), 135. 9 Zhao Q, Sun Q, Xin S, et al. Materials Science and Engineering: A, 2022, 845, 143260. 10 Fashu S, Lototskyy M, Davids M W, et al. Materials & Design, 2020, 186, 108295. 11 Khan A N, Muhyuddin M, Wadood A. Russian Journal of Non-Ferrous Metals, 2017, 58, 509. 12 Pickering L, Lototskyy M V, Davids M W, et al. Materials Today: Proceedings, 2018, 5(4), 10470. 13 Zhu M, Lv G, Li X, et al. Materials Research Express, 2023, 10(4), 046518. 14 Kovalchuk D. In: Ti 2011-Proceedings of the 12th World Conference on Titanium. Beijing, 2012, pp. 150. 15 Yang Y, Wang X, Li X, et al. Materials, 2023, 17(1), 184. 16 Lei W G, Zhao Y Q, Han D, et al. Materials Reports, 2016, 30(5), 101(in Chinese). 雷文光, 赵永庆, 韩栋, 等. 材料导报, 2016, 30(5), 101. 17 Zhang J, Xu F. Special Casting and Nonferrous Alloys, 1989(5), 27(in Chinese). 张俭, 徐发. 特种铸造及有色合金, 1989(5), 27. 18 Breig P G, Scott S W. Materials and Manufacturing Processes, 1989, 4(1), 73. 19 Dong H Q, Guo Z M, Mao X M, et al. Materials Reports, 2008(5), 68(in Chinese). 董和泉, 国子明, 毛协民, 等. 材料导报, 2008(5), 68. 20 Woodside C R, King P E, Nordlund C. Metallurgical and Materials Transactions B, 2013, 44, 154. 21 Kazemipour M, Salimijazi H, Saidi A, et al. International Journal of Hydrogen Energy, 2014, 39(24), 12784. 22 Liu Q L, Li X M, Jiang Y H. Hot Working Technology, 2016, 45(9), 9(in Chinese). 刘千里, 李向明, 蒋业华. 热加工工艺, 2016, 45(9), 9. 23 Osamu T, Toru H. Jom, 2019, 71(6), 1981. 24 Du B, Tang Z H, Zhang Z B, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(12), 2989(in Chinese). 杜彬, 唐增辉, 张志斌, 等. 中国有色金属学报, 2020, 30(12), 2989. 25 Kazemipour M, Salimijazi H, Saidi A, et al. International Journal of Hydrogen Energy, 2015, 40(45), 15569. 26 Zhang L C, Liu Y, Li S, et al. Advanced Engineering Materials, 2018, 20(5), 1700842. 27 Liu X P. Interface reaction between yttria materials and titanium alloys. Master’s Thesis, Northeastern University, China, 2009(in Chinese). 刘翔鹏. 氧化钇材料与钛合金的界面反应. 硕士学位论文, 东北大学, 2009. 28 He J, Zhou H, Zhu W Q, et al. Materials Reports, 2014, 28(15), 87(in Chinese). 贺进, 周汉, 朱文琪, 等. 材料导报, 2014, 28(15), 87. 29 Ren J C, Ming G, Hu Z, et al. Journal of Materials Processing Technology, 2010, 210(9), 1190. 30 Zhao C, Wang R Y, Pan K J, et al. Chinese Science Bulletin, 2022, 67(11), 1155(in Chinese). 赵超, 王如愿, 潘科嘉, 等. 科学通报, 2022, 67(11), 1155. 31 Wan B, Zhang H, Ran C, et al. Ceramics International, 2018, 44(1), 32. 32 Wan B, Zhang H, Gao M, et al. Materials & Design, 2018, 138, 103. 33 Ming G, Cui R, Ma L, et al. Journal of Materials Processing Technology, 2011, 211(12), 2004. 34 Li N, Xia T, Heng L, et al. Applied Physics Letters, 2013, 102(25), 251603. 35 Ran C, Zhang H, Zhang H, et al. Acta Metallurgica Sinica (English Letters), 2017, 30, 456. 36 Liu A H. Study on the interface reaction and microscopic mechanism between titanium alloy melt and ceramic mold. Ph. D. Thesis, Harbin Institute of Technology, China, 2007(in Chinese). 刘爱辉. 钛合金熔体与陶瓷铸型界面反应规律及微观机理研究. 博士学位论文, 哈尔滨工业大学, 2007. 37 Li J, Zhang H, Gao M, et al. Vacuum, 2020, 182, 109701. 38 Gomes F, Puga H, Barbosa J, et al. Journal of Materials Science, 2011, 46, 4922. 39 Kostov A, Friedrich B. Computational Materials Science, 2006, 38, 374. 40 Kostov A, Friedrich B. Journal of Mining and Metallurgy B: Metallurgy, 2005, 41(1), 113. 41 Gomes F, Barbosa J, Ribeiro C S. Intermetallics, 2008, 16(11-12), 1292. 42 Liu K, Ma Y C, Gao M, et al. Intermetallics, 2005, 13(9), 925. 43 Fu B, Wang H, Zou C, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(10), 3118. 44 Sun T T, Jiang M, Li C H, et al. Advanced Materials Research, 2011, 177, 502. 45 Li B, Wei Y, Wang J, et al. Journal of the American Ceramic Society, 2021, 104(9), 4878. 46 Zhang L, Fan S G. Modern Technical Ceramics, 2002, 23(4), 23(in Chinese). 张林, 范仕刚. 现代技术陶瓷, 2002, 23(4), 23. 47 Zhang W, Zhang J, Duan C L, et al. Journal of Shenyang University of Technology, 2020, 42(6), 624(in Chinese). 张巍, 张金, 段春雷, 等. 沈阳工业大学学报, 2020, 42(6), 624. 48 Klotz U E, Legner C, Bulling F, et al. The International Journal of Advanced Manufacturing Technology, 2019, 103, 343. 49 Li C H, Gao Y H, Lu X G, et al. Advances in Science and Technology, 2010, 70, 136. 50 Chen G, Kang J, Gao P, et al. International Journal of Applied Ceramic Technology, 2018, 15(6), 1459. 51 Zhang Z, Zhu K L, Liu L J, et al. Journal of the Chinese Ceramic Society, 2013, 41(9), 1278(in Chinese). 张钊, 朱凯亮, 刘岚洁, 等. 硅酸盐学报, 2013, 41(9), 1278. 52 Zhang Y, Feng Q S, Chen G Y, et al. Rare Metal Materials and Engineering, 2021, 50(3), 988(in Chinese). 张胤, 冯齐胜, 陈光耀, 等. 稀有金属材料与工程, 2021, 50(3), 988. 53 Chen G Y, Li B T, Gao P Y, et al. Journal of the Chinese Ceramic Society, 2017, 45(9), 1354(in Chinese). 陈光耀, 李宝同, 高鹏越, 等. 硅酸盐学报, 2017, 45(9), 1354. 54 Zhou L H, Chen G Y, Li B T, et al. The Chinese Journal of Nonferrous Metals, 2017, 27(11), 2276(in Chinese). 周路海, 陈光耀, 李宝同, 等. 中国有色金属学报, 2017, 27(11), 2276. 55 Kang J Y, Chen G Y, Lan B B, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(4), 750(in Chinese). 康菊芸, 陈光耀, 兰豹豹, 等. 中国有色金属学报, 2019, 29(4), 750. 56 Gao M, Cui R, Ma L, et al. Journal of Materials Processing Technology, 2011, 211(12), 2004. 57 Dang Q, Huang G, Wang Y, et al. Journal of Iron and Steel Research (International), 2024, 31(3), 738. 58 Dang Q, Wang S S, Yu W, et al. Journal of Materials Research and Technology, 2024, 31, 2306. 59 Tetsui T, Kobayashi T, Kishimoto A, et al. Intermetallics, 2012, 20(1), 16. 60 Tan Y, Zhang J, Chen P, et al. Ceramics International, 2021, 47(6), 7448. 61 Zhang H R, Tang X X, Zhou L, et al. Journal of Materials Science, 2012, 47, 6451. 62 Chen Y, Dave C, Xu C, et al. Journal of the European Ceramic Society, 2012, 32(16), 4041. 63 Zhao F M, Yao S Y, Wen J. Rare Metals, 1993, 17(2), 152(in Chinese). 赵凤鸣, 姚世义, 文杰. 稀有金属, 1993, 17(2), 152. 64 Zhang Q, Zhou X, Liu H B, et al. Journal of Shanghai University (Na-tural Science Edition), 2008, 14(5), 537(in Chinese). 张蔷, 周星, 刘宏葆, 等. 上海大学学报(自然科学版), 2008, 14(5), 537. 65 Kartavykh A V, Tcherdyntsev V V, Zollinger J. Materials Chemistry and Physics, 2010, 119(3), 347. 66 Lyu S S, Zhou Y X, Ni W, et al. Journal of Ceramics, 2018, 39(6), 672(in Chinese). 吕帅帅, 周宇翔, 倪威, 等. 陶瓷学报, 2018, 39(6), 672. 67 Zhang X H, Hu P, Han J C, et al. Chinese Science Bulletin, 2015, 60(3), 257(in Chinese). 张幸红, 胡平, 韩杰才, 等. 科学通报, 2015, 60(3), 257. 68 Kartavykh A V, Tcherdyntsev V V, Zollinger J. Materials Chemistry and Physics, 2009, 116(1), 300. 69 Yang G L, Wang E M, Han J, et al. Journal of Materials Engineering, 2011, 39(11), 51(in Chinese). 杨根林, 王二敏, 韩劲, 等. 材料工程, 2011, 39(11), 51. 70 Frenzel J, Zhang Z, Neuking K, et al. Journal of Alloys and Compounds, 2004, 385(1-2), 214. 71 Nayan N, Saikrishna C N, Ramaiah K V, et al. Materials Science and Engineering: A, 2007, 465(1-2), 44. 72 Sure J, Mishra M, Tarini M, et al. Thin Solid Films, 2013, 544, 218. |
|
|
|