INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Sub-1 nm Materials Based on Cluster-Nuclei Co-assembly |
YE Qinghua1,2, ZHAO Yali2, CAI Mingxin2,3, ZHAI Jinxiu2, CAO Xingjian2, LIU Xijun4, HE Peilei2,3,*
|
1 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China 2 Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China 3 College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China 4 Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China |
|
|
Abstract Sub-1 nm materials are defined as materials with characteristic dimensions smaller than 1 nm in at least one dimension. Compared to conventional nanomaterials, sub-1 nm materials often exhibit unique properties, leading to a wide range of potential applications. Professor Wang Xun’s research group at Tsinghua University has successfully developed methods for synthesizing sub-1 nm materials in good- and poor-solvent system and proposed a cluster-nuclei co-assembly strategy to achieve compositional control at the sub-1 nm scale. This strategy has evolved into a universal method for the synthesis of various sub-1 nm materials. Due to their exceptionally high specific surface area and nearly 100% surface atom exposure, sub-1 nm materials exhibit rapid electron/ion transport characteristics, making them widely applicable in energy storage, catalysis, and photothermal conversion. This review introduces the concept of the cluster-nuclei co-assembly strategy and elucidates the formation mechanisms of sub-1 nm materials. Additionally, it reviews the current research status of sub-1 nm materials synthesized through this strategy, systematically discussing their synthesis methods and structures, as well as their applications in energy storage, catalysis, and photothermal conversion. Finally, the challenges facing sub-1 nm materials today and future research directions are presented, aiming to provide new perspectives for the design and precise synthesis of sub-1 nm materials.
|
Published: 25 June 2025
Online: 2025-06-19
|
|
|
|
1 Whitesides G M, Mathias J P, Seto C T. Science, 1991, 254(5036), 1312. 2 Ozin G A. Advanced Materials, 1992, 4(10), 612. 3 Kang J X, Yang X Y, Hu Q, et al. Chemical Reviews, 2023, 123(13), 8859. 4 Du Y P, Yin Z Y, Zhu J X, et al. Nature Communications, 2012, 3(1), 1177. 5 Rao P, Deng Y J, Fan W J, et al. Nature Communications, 2022, 13(1), 5071. 6 Rao P, Wu D X, Wang T J, et al. eScience, 2022, 2(4), 399. 7 Huang B, Ge Y Y, Zhang A, et al. Advanced Materials, 2023, 35(35), 2302233. 8 Wu H E, Fei G T, Gao X D, et al. China Powder Science and Technology, 2023, 29(5), 70 (in Chinese). 吴红娥, 费广涛, 高旭东, 等. 中国粉体技术, 2023, 29(5), 70. 9 Li T T, Deng Y T, Rong X, et al. SmartMat, 2023, 4(1), e1142. 10 Liu J W, Lee C, Hu Y, et al. SmartMat, 2023, 4(4), e1210. 11 Rao P, Wang T J, Li J, et al. Advanced Sensor and Energy Materials, 2022, 1(1), 100005. 12 Fu S H, Li Y, Wang Y Q. China Powder Science and Technology, 2024, 30(6), 27 (in Chinese). 付时辉, 李圆, 王延青. 中国粉体技术, 2024, 30(6), 27. 13 Chen Z X, Zhang Y T, Zhao C, et al. Advanced Materials, 2024, 36(15), 2310022. 14 Wang T, Chen W C, Liu Q D, et al. Angewandte Chemie International Edition, 2023, 62(51), e202314045. 15 Yu B, Wang X. ACS Nano, 2021, 15(11), 17247. 16 Zhang S M, Wang X. ACS Nano, 2023, 17(1), 20. 17 Ji Y Q, Yu Z H, Yan L G, et al. China Powder Science and Technology, 2023, 29(4), 100 (in Chinese). 纪玉祺, 于子函, 闫良国, 等. 中国粉体技术, 2023, 29(4), 100. 18 Chen Z X, Wu X X, Xiao L Y, et al. Nano Today, 2024, 54, 102126. 19 Niu J, Liang J J, Gao A, et al. Journal of Materials Chemistry A, 2019, 7(38), 21711. 20 Wei H S, Gao Z H, Cao L R, et al. Nanoscale, 2023, 15(3), 1422. 21 Liu H X, Wang W W, Fu X P, et al. Nature Communications, 2024, 15(1), 9126. 22 Yuan G B, Liu J L, Zhang Y. Batteries & Supercaps, 2024, 7(4), e202300623. 23 Moriai T, Tsukamoto T, Tanabe M, et al. Angewandte Chemie International Edition, 2020, 59(51), 23051. 24 Sonobe K, Tanabe M, Yamamoto K. ACS Nano, 2020, 14(2), 1804. 25 Hu S, Liu H L, Wang P P, et al. Journal of the American Chemical Society, 2013, 135(30), 11115. 26 Liu H L, Li H Y, He P L, et al. Small, 2016, 12(8), 1006. 27 Zhan C H, Xu Y, Bu L Z, et al. Nature Communications, 2021, 12(1), 6261. 28 Yu D D, Luo W, Gu H F, et al. Chemical Engineering Journal, 2023, 454, 139908. 29 Nie S Y, Wu L, Wang X. Journal of the American Chemical Society, 2023, 145(43), 23681. 30 Cheng X J, Zhang S M, Wang X. Nano Letters, 2021, 21(23), 9845. 31 Yuan G B, Ge H Y, Shi W X, et al. Angewandte Chemie International Edition, 2023, 62(39), e202309934. 32 Ni B, Liu H L, Wang P P, et al. Nature Communications, 2015, 6(1), 8756. 33 Liu H L, Gong Q H, Yue Y H, et al. Journal of the American Chemical Society, 2017, 139(25), 8579. 34 Liu Q D, Wang X. Matter, 2020, 2(4), 816. 35 Xia Y N, Xiong Y J, Lim B, et al. Angewandte Chemie International Edition, 2009, 48(1), 60. 36 Liu J L, Shi W X, Ni B, et al. Nature Chemistry, 2019, 11(9), 839. 37 Ni B, Shi Y, Wang X. Advanced Materials, 2018, 30(43), 1802031. 38 Zhang S M, Shi Y, He T, et al. Chemistry of Materials, 2018, 30(24), 8727. 39 Bu F L, Chen C Q, Yu Y, et al. Angewandte Chemie International Edition, 2023, 62(3), e202216062. 40 Liu J L, Shi W X, Wang X. Journal of the American Chemical Society, 2019, 141(47), 18754. 41 Liu J L, Liu N, Wang H W, et al. Journal of the American Chemical Society, 2020, 142(41), 17557. 42 Liu J L, Shi W X, Wang X. Journal of the American Chemical Society, 2021, 143(39), 16217. 43 Liu J L, Wang S B, Liu N, et al. Small, 2021, 17(4), 2006260. 44 Liu J L, Zhuang J, Shi W X, et al. Chemistry of Materials, 2021, 33(17), 7100. 45 Liu J L, Li Y Q, Chen Z, et al. Journal of the American Chemical Society, 2022, 144(50), 23191. 46 Liu J L, Nie S Y, Wu L, et al. Chemical Research in Chinese Universities, 2023, 39(4), 624. 47 Zhang S M, Lu Q C, Yu B, et al. Advanced Functional Materials, 2021, 31(20), 2100703. 48 Liu J L, Shi W X, Nie S Y, et al. Small Structures, 2022, 3(7), 2200039. 49 Liu Q D, He S Q, Yu B, et al. Advanced Materials, 2022, 34(40), 2206178. 50 Liu J L, Wang M X, Dipalo M C, et al. Chemical Science, 2021, 12(34), 11490. 51 Ge H Y, Zheng L R, Yuan G B, et al. Journal of the American Chemical Society, 2024, 146(15), 10735. 52 Zhang S M, Shi H D, Tang J W, et al. Science China Materials, 2021, 64(12), 2949. 53 Zhang S M, Shi W X, Wang X. Science, 2022, 377(6601), 100. 54 Zhang S M, Shi W X, Yu B A, et al. Journal of the American Chemical Society, 2022, 144(36), 16389. |
|
|
|