| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| The Role of Pre-oxidation in the Preparation and Modification of Hard Carbon for High-performance Sodium-ion Batteries |
| HUI Gongling1, ZHANG Jinhao1, XIE Wei1, XIN Zhi1,2, MAO Yixuan3,4, CHEN Chengmeng3,*
|
1 China Coal Huali Energy Holdings Corporation Ltd., Beijing 100020, China 2 China Coal Huali Xinjiang Carbon Technology Corporation Ltd., Hami 839200, Xinjiang, China 3 Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China 4 School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
|
|
Abstract Sodium-ion batteries have become the preferred choice for next-generation high-efficiency energy storage systems due to advantages such as excellent safety performance as well as low cost. Hard carbon, as its unique commercially available anode material with benefits such as high first efficiency and good cycling stability, is synthesized from a series of modification treatments through precursors. Among the numerous modification means, pre-oxidation treatment is an effective pretreatment strategy for the preparation of high-performance hard carbon due to its simplicity and high efficiency, including gas-phase oxidation, liquid-phase oxidation, solid-phase oxidation, and other forms. However, due to the complex molecular structures of different hard carbon precursors corresponding to different oxidation mechanisms, the unclear molecular structure evolution and its mechanism of action on the hard carbon structure hinder the design of high-performance hard carbon. In this review, we focus on the evolution of different hard carbon precursors in the process of synthesizing hard carbon through preoxidation, and discuss in detail several mechanisms of preoxidation on the structural evolution of hard carbon. And we review the role of preoxidation in the preparation and modification of hard carbon for high-performance sodium-ion batteries from the perspective of three common hard carbon precursors, namely, mineral, biomass and synthetic molecules, which provides some references to the selection of preoxidation modes of different molecular structures.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Rashidi N A, Yusup S. Journal of CO2 Utilization, 2016, 13, 1. 2 Jin H Y, Zhou K K, Ji Z J, et al. Friction, 2020, 8(4), 684. 3 Le N D, Trogen M, Ma Y B, et al. Carbohydrate Polymers, 2020, 250, 116918. 4 Mitoma N, Yano Y, Ito H, et al. ACS Applied Nano Materials, 2019, 2, 4825. 5 Cheng D J, Zhou X Q, Hu H Y, et al. Carbon, 2021, 182, 758. 6 Niu W J, Ren L N, Deng J M, et al. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(19), 221 (in Chinese). 牛文娟, 任鲁娜, 邓继猛, 等. 农业工程学报, 2023, 39(19), 221. 7 Gao Z Y, Zhang W J. Journal of Guizhou University, Natural Science Edition, 2018, 35(6), 7 (in Chinese). 高志勇, 张晚佳. 贵州大学学报, 自然科学版, 2018, 35(6), 7. 8 Guo D D. Preparation and investigation of pre-oxidized polyacrylonitrile based carbon fibers modified with hydroxylammonium chloride. Master’s Thesis, Wuhan Textile University, China, 2013 (in Chinese). 郭丹丹. 聚丙烯腈基碳纤维改性、预氧化工艺及其机理的探讨. 武汉纺织大学, 硕士学位论文, 2013. 9 Li X J, Luo Q H, Zhu Y J, et al. Science in China (Series B), 2001(1), 72 (in Chinese). 李小佳, 罗倩华, 朱一钧, 等. 中国科学(B辑化学), 2001(1), 72. 10 Han. X X. Shanghai Textile Science & Technology, 2022, 50(8), 26 (in Chinese). 韩笑笑. 上海纺织科技, 2022, 50(8), 26. 11 Sieira P, Guimarães C, Braga A, et al. Journal of Industrial and Engineering Chemistry, 2024, 136, 465. 12 Goikolea E, Palomares V, Wang S, et al. Advanced. Energy Materials, 2020, 10(44), 2002055. 13 Sarkar S, Roy S, Hou Y, et al. Chemistry Sustainability Energy Materials, 2021, 14(18), 3693. 14 Chayambuka K, Mulder G, Danilov D L, et al. Advanced Energy Materials, 2018, 8(16), 1800079. 15 Zhou H Y, Song Y H, Zhang B Y. Energy Storage Materials, 2024, 71, 103645. 16 Ghimbeu C M, Beda A, Réty B, et al. Advanced Energy Materials, 2024, 14, 2303833. 17 Huang G, Zhang H, Gao F, et al. Carbon, 2024, 228, 119354. 18 Lou Z J, Wang H, Wu D, et al. Fuel, 2022, 310, 122072. 19 Zhao G X, Xu T Q, Zhao Y M, et al. Energy Storage Materials, 2024, 67, 103282. 20 Lu Y X, Zhao C L, Qi X G, et al. Advanced Energy Materials, 2018, 8, 1800108. 21 Daher N, Huo D, Davoisne C, et al. ACS Applied. Energy Materials, 2020, 3, 6501. 22 Zhao P Y, Tang J J, Wang C Y, Journal of Solid State Electrochemistry, 2017, 21, 555. 23 Guo H Y, Li Y Y, Wang C L, et al. New Carbon Materials, 2021, 36(6), 1073. 24 Yuan R L, Dong Y, Hou R Y, et al. 2023, 454, 140148. 25 Xu R, Yi Z L, Song M X, et al. Carbon, 2023, 206, 94. 26 Wu J R, Yang T, Song Y, et al. Carbon, 2024, 221, 118902. 27 Zhang X F, Yi Z L, Tian Y R, et al. Carbon, 2024, 226, 119165. 28 Wang J, Yan L, Liu B H, et al. Chinese Chemical Letters, 2023, 34(4), 107526. 29 Qi Y R, Lu Y X, Liu L L, et al. Energy Storage Materials, 2020, 26, 577. 30 Zhang T, Yang L, Yan X, et al. Small, 2018, 14(47), 1802444. 31 Zhu H, Luo W, Ciesielski P N, et al. Chemical Review, 2016, 116(16), 9305. 32 Zhou J, Chang C, Zhang R, et al. Macromolecular Bioscience, 2007, 7(6), 804. 33 Yamamoto H, Muratsubaki S, Kubota K, et al. Journal of Materials Chemistry A, 2018, 6(35), 16844. 34 Mao Y X, Yi Z L, Xie L J, et al. Energy Storage Materials, 2024, 73, 103845. 35 Wen J H, Yin Y, Peng X F, et al. Cellulose, 2019, 26, 2699. 36 Shen F, Zhu H L, Luo W, et al. ACS Applied Materials & Interfaces, 2015, 7, 23291. 37 Zhao S, Wang C Y, Chen M M, et al. New Carbon Materials, 2010, 25(6), 438. 38 Lu Y X, Zhao C L, Qi X G, et al. Advanced Energy Materials, 2018, 8 (27), 6. 39 Du Y F, Sun G H, Li Y, et al. Carbon, 2021, 178, 243. 40 Wei Z, Zhao H X, Niu Y B, et al. Materials Chemistry Frontiers, 2021, 5(10), 3911. 41 Liu Y, Li K, Sun G, et al. Journal of Physics and Chemistry of Solids, 2010, 71(4), 453. 42 Zhang G F, Zhang L J, Ren Q J, et al. ACS Applied Materials & Interfaces, 2021, 13(27), 31650. 43 Qian Y, Jiang S, Li Y, et al. Advanced Energy Materials, 2019, 9, 1901676. 44 Ji L C, Zhao Y, Cao L J, et al. Journal of Materials Chemistry A, 2023, 11, 26727. 45 Guan T T, Zhang G L, Zhao J H, et al. Fuel, 2019, 242(15), 184. |
|
|
|