| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Study on the Fracture Mechanical Properties of Steel Slag Fine Aggregate Concrete |
| XUE Gang*, WU Jinyue, XU Sheng, LIU Jiangsen, DONG Wei
|
| School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China |
|
|
|
|
Abstract To study the fracture performance of steel slag fine aggregate concrete (SSC), wedge splitting tests were conducted on SSC specimens with four different steel slag content levels (0%, 10%, 20% and 30%) and three different seam-height ratios (0.2, 0.3 and 0.4). The initial cracking load, peak load, and load-crack mouth opening displacement (P-CMOD) curves were measured during the fracture process. Based on the double-K fracture theory, fracture parameters such as initial cracking and unstable fracture toughness were calculated, and the variation of SSC fracture parameters with changes in steel slag content and seam-height ratio was analyzed. The results show that when the steel slag fine aggregate content is 0%—30%, the fracture performance of the concrete significantly improves with the increase of the steel fine aggregate content, and has the best enhancement with the maximum value of cracking and unstable fracture toughness when the steel slag content reaches 30%. Additionally, when the seam-height ratio is between 0.2 and 0.4, the initial cracking toughness of SSC is not affected by the seam-height ratio, suggesting it is an inherent property of the material. However, the unstable fracture toughness decreases slowly as the seam-height ratio increases.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Li Z N, Shen A Q, Yang X R, et al. Road Materials and Pavement Design, 2023, 24(2), 537. 2 Ho Q V, Huynh T P. Journal of Building Engineering, 2023, 80, 107982. 3 Yi H, Xu G P, Cheng H G, et al. Procedia Environmental Sciences, 2012, 16, 791. 4 Wu B, Yu Y, Chen Z P, et al. Construction and Building Materials, 2018, 187, 50. 5 Gencel O, Karadag O, Oren O H, et al. Construction and Building Materials, 2021, 283, 122783. 6 Fan D Q, Yu R, Shui Z H, et al. Construction and Building Materials, 2021, 306, 124913. 7 Li G, Wang X Z, Zhang X F, et al. Concrete, 2018(4), 53(in Chinese). 李根, 王学志, 张晓飞, 等. 混凝土, 2018(4), 53. 8 Li G, Wang X Z, Zhang X F, et al. Journal of Changjiang River Scientific Research Institute, 2019, 36(2), 139 (in Chinese). 李根, 王学志, 张晓飞, 等. 长江科学院院报, 2019, 36(2), 139. 9 Lu Z D, Yu K Q, Su L, et al. Journal of Building Materials, 2012, 15(6), 836(in Chinese). 陆洲导, 俞可权, 苏磊, 等. 建筑材料学报, 2012, 15(6), 836. 10 Xie J, Yan M L, Liu Y. Engineering Mechanics, 2023, 40(2), 202(in Chinese). 谢剑, 闫明亮, 刘洋. 工程力学, 2023, 40(2), 202. 11 Liu G S, Ye, Y F, Peng J F, et al. New Building Materials, 2023, 50(12), 74(in Chinese). 刘根生, 叶勇芳, 彭竞锋, 等. 新型建筑材料, 2023, 50(12), 74. 12 Chen X Q, Wang Y H, Liu Z H, et al. Journal of Cleaner Production, 2022, 338, 130614. 13 Guo Y C, Xie J H, Zheng W Y, et al. Construction and Building Materials, 2018, 192, 194. 14 Costa L C B, Nogueira M A, Andrade H D, et al. Construction and Building Materials, 2022, 318, 126152. 15 Cheng X, Tian W, Gao J F, et al. Construction and Building Materials, 2022, 344, 128203. 16 Papachristoforou M, Anastasiou E K, Papayianni I. Construction and Building Materials, 2020, 262, 120569. 17 Sun K K, Peng X Q, Chu S H, et al. Construction and Building Materials, 2021, 300, 124024. 18 Wu F, Yu Q L, Brouwers H J H. Construction and Building Materials, 2022, 333, 127445. 19 Kumar H, Varma S. International Journal of Pavement Research and Technology, 2021, 14(2), 232. 20 Skaf M, Pasquini E, Revilla-Cuesta V, et al. Materials, 2019, 12(20), 3306. 21 Díaz-Piloneta M, Terrados-Cristos M, Álvarez-Cabal J V, et al. Materials, 2021, 14(13), 3587. 22 Xu S L, Reinhardt H W. International Journal of Fracture, 1999, 98(2), 111. 23 Xu S L, Reinhardt H W. International Journal of Fracture, 1999, 98(2), 151. 24 Albostami A S, Al-Hamd R K S, Al-Matwari A A. Buildings, 2024, 14(8), 2476. 25 Wang Y, Suraneni P. Construction and Building Materials, 2019, 204, 458. 26 Ortega-López V, Fuente-Alonso J A, Santamaría A, et al. Construction and Building Materials, 2018, 163, 471. 27 Xu W, Zhao S J, Zhang W Z, et al. Buildings, 2024, 14(1), 158. 28 Li C, Cheng Z W, Xie J, et al. Materials Reports, 2017, 31(3), 11(in Chinese). 李超, 陈宗武, 谢君, 等. 材料导报, 2017, 31(3), 11. 29 Rong H, Dong W, Wu Z M, et al. Engineering Mechanics, 2012, 29(1), 162(in Chinese). 荣华, 董伟, 吴智敏, 等. 工程力学, 2012, 29(1), 162. 30 Du M, Wu L, Zheng J M. Water Resources and Hydropower Engineering, 2019, 50(11), 41(in Chinese). 杜敏, 武亮, 张建铭. 水利水电技术, 2019, 50(11), 41. 31 Hu S W, Xie J F, Yu J. Journal of Changjiang River Scientific Research Institute, 2015, 12(2), 114(in Chinese). 胡少伟, 谢建锋, 喻江. 长江科学院学报, 2015, 12(2), 114. 32 Zhao C Y. Experimental research on fracture performance of steel slag concrete. Master’s Thesis, Guangdong University of Technology, China, 2016 (in Chinese). 赵出云. 钢渣混凝土的断裂性能试验研究. 硕士学位论文, 广东工业大学, 2016. 33 Wang Z P, Wu S P, Yang C, et al. Materials, 2022, 15(14), 5005. 34 Lai M H, Zou J J, Yao B Y, et al. Construction and Building Materials, 2021, 277(3), 122269. |
|
|
|