| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Strength Characteristics and Microstructure Evolution of Magnesium-Coal Based All Solid Waste Backfill Materials |
| LIU Lang1,2,*, YUAN Yi1,2, WANG Haishe4, WEI Baoning3, LIANG Xiong4, ZHU Mengbo1,2, LIU Biao4, HU Tao4, YANG Pang1,2
|
1 College of Energy and Mining Engineering, Xi’an University of Science and Technology, Xi’an 710054, China 2 Mine Functional Backfill Technology Research Center, Xi’an University of Science and Technology, Xi’an 710054, China 3 Xi’an Fur Lvchuang Mining Technology Co, Xi’an 710054, China 4 Shaanxi Yuneng Chemical Materials Co, Yulin 719000, Shaanxi China |
|
|
|
|
Abstract With the mining and deep processing of coal resources, a large amount of solid waste is deposited on the surface. In order to achieve green mining and promote the disposal and utilization of bulk solid waste, modified magnesium slag (MMS), coal gasification slag (CGS), coal gangue (CG), and desulfurization gypsum (FDG) were used to prepare magnesium-coal based solid waste backfill material (M-CSWBM). Uniaxial compression testing, X-ray polycrystalline diffraction(XRD), thermogravimetric analysis(TG), scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), and mercury intrusion porosimetry testing methods(MIP) were used to reveal the effects of different types and amounts of doped solid wastes on the microstructure and macroeconomics development of the filled body. The experimental results demonstrated that the specimens attained optimal compressive strength when the constituent proportions of MMS, CGS, and FDG were maintained at 20%, 40%, and 5% respectively. The corresponding compressive strengths measured 0.26 MPa, 9.55 MPa, and 12.16 MPa following curing periods of 3 d, 28 d, and 56 d; CGS and MMS incorporation, will make the hydration products in the system increased significantly, the transformation of large pores to small pores and the most available pore size gradually become smaller, the strength of the positive growth trend; appropriate amount of FDG incorporation to promote the hydration reaction, the system connected to the voids to be refined, the strength of the growth of the role of a significant contribution to the growth of the. FDG addition from 0% to 7.5% increased the compressive strength of M-CSWBM specimens at 28 d from 0.76 MPa to 5.65 MPa, an enhancement of 641%, but excessive addition resulted in an increase in both internal porosity, and most available pore size, which inhibited the strength increase. A 10% decrease in strength was observed for the 10% FDG doped specimens at 28 d compared to the 7.5% doped. Based on the above results, by establishing the correlation between hydration products, pore structure and compressive strength, it reveals that the solid waste dosing affects the development law of compressive strength by influencing the hydration pro-ducts, pore structure and then the compressive strength. The research results provide data support and theoretical reference for the utilization of bulk all-solid waste backfill materials.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 He G, Lin J, Zhang Y, et al. One Earth, 2020, 3(2), 187. 2 Lv B, Deng X W, Jiao F S, et al. Process Safety and Environmental Protection, 2023, 171, 859. 3 Li Y, Wang H H. Jiaotong Keji Yu Guanli 2023, 4(16), 135(in Chinese). 李钰, 王行行. 交通科技与管理, 2023, 4(16), 135. 4 Guo F Q, Liu K L, Qiao Y, et al. Coal Processing & Comprehensive Utilization, 2023(8), 89(in Chinese). 郭富强, 刘昆仑, 俞乔, 等. 煤炭加工与综合利用, 2023(8), 89. 5 Zhu J F, Li J, Yan L, et al. Clean Coal Technology, 2021, 27(6), 11(in Chinese). 朱菊芬, 李健, 闫龙, 等. 洁净煤技术, 2021, 27(6), 11. 6 Chen X L, Liang C, Song D Y. Northeast Electric Power Technology, 2020, 41(7), 27(in Chinese). 陈晓龙, 梁川, 宋大勇. 东北电力技术, 2020, 41(7), 27. 7 Guo J J, Niu Y E. Metallurgy and Materials, 2023, 43(1), 9(in Chinese). 郭静静, 牛艳娥. 冶金与材料, 2023, 43(1), 9. 8 Zhu T, Han Y W. China Coal, 2020, 46(12), 86(in Chinese). 竹涛, 韩一伟. 中国煤炭, 2020, 46(12), 86. 9 Liu J G, Li X W, He T. Journal of China Coal Society, 2020, 45(1), 141(in Chinese). 刘建功, 李新旺, 何团. 煤炭学报, 2020, 45(1), 141. 10 Liu J, Qin K. Mining Safety & Environmental Protection, 2023, 50(6), 7(in Chinese). 刘具, 秦坤. 矿业安全与环保, 2023, 50(6), 7. 11 Liu L, Fang Z Y, Zhang B, et al. Metal Mine, 2021(3), 1(in Chinese). 刘浪, 方治余, 张波, 等. 金属矿山, 2021(3), 1. 12 Zhou L B, Sun X H, Liu Z, et al. Journal of China Coal Society, 2023, 48(12), 4536(in Chinese). 周林邦, 孙星海, 刘泽, 等. 煤炭学报, 2023, 48(12), 4536. 13 Wang M, He X, Yang K. Sustainability, 2023, 15(2), 1523. 14 Hua X Z, Chang G F, Liu X, et al. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(8), 1536(in Chinese). 华心祝, 常贯峰, 刘啸, 等. 岩石力学与工程学报, 2022, 41(8), 1536. 15 Wei Z, Yang K, He X, et al. Materials, Multidisciplinary Digital Publishing Institute, 2022, 15(15), 5318. 16 Guo L Z, Zhou M, Wang L J, et al. Journal of Building Materials, 2022, 25(10), 1092(in Chinese). 郭凌志, 周梅, 王丽娟, 等. 建筑材料学报, 2022, 25(10), 1092. 17 Zhang J Q, Yang K, He X, et al. Metals, 2022, 12(7), 1155. 18 Yang K, Zhao X Y, He X, et al. Shanxi Coal, 2021, 41(4), 2(in Chinese). 杨科, 赵新元, 何祥, 等. 山西煤炭, 2021, 41(4), 2. 19 Zhang W Y, Lin H X, Wang S, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(2), 526(in Chinese). 张文艳, 林华夏, 王帅, 等. 硅酸盐通报, 2022, 41(2), 526. 20 Ma H Q, Yi C, Chen H Y, et al. Chinese Journal of Materials Research, 2018, 32(12), 898(in Chinese). 马宏强, 易成, 陈宏宇, 等. 材料研究学报, 2018, 32(12), 898. 21 Yao W, Zheng B K, Qiu J P, et al. Materials Reports, 2022, 36(S1), 578(in Chinese). 姚维, 郑伯坤, 邱景平, 等. 材料导报, 2022, 36(S1), 578. 22 Liu L, Ruan S S, Fang Z Y, et al. Journal of China Coal Society, 2021, 46(12), 3833(in Chinese). 刘浪, 阮仕山, 方治余, 等. 煤炭学报, 2021, 46(12), 3833. 23 Lu M Y, Pang L X, Yang D, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(7), 2344(in Chinese). 卢明阳, 庞来学, 杨达, 等. 硅酸盐通报, 2022, 41(7), 2344. 24 Ni W, Li Y, Xu C W, et al. Journal of Central South University(Science and Technology), 2019, 50(10), 2342(in Chinese). 倪文, 李颖, 许成文, 等. 中南大学学报(自然科学版), 2019, 50(10), 2342. 25 Qi Z H, Li J J, Ni W, et al. Mining Research and Development, 2022, 42(10), 58(in Chinese). 齐子函, 李佳洁, 倪文, 等. 矿业研究与开发, 2022, 42(10), 58. 26 Yu K P, Ma L Q, Huo B B, et al. Journal of Materials Research and Technology, 2024, 28, 2924. 27 Liu C H, Yue X T, Jiao C B, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 3574(in Chinese). 刘冲昊, 岳雪涛, 矫川本, 等. 硅酸盐通报, 2020, 39(11), 3574. 28 Ke G J, Li Z Y, Jiang H S. Construction and Building Materials, 2024, 427, 136284. 29 Zhao J, Wang Y K, Wang J Y, et al. Industrial Catalysis, 2022, 30(3), 1(in Chinese). 赵江, 王云康, 王建友, 等. 工业催化, 2022, 30(3), 1. 30 Sun W J, Liu L, Xu L H, et al. Journal of Central South University (Science and Technology), 2022, 53(10), 4057(in Chinese). 孙伟吉, 刘浪, 徐龙华, 等. 中南大学学报(自然科学版), 2022, 53(10), 4057. 31 Yang P, Liu L, Suo Y L, et al. Science of The Total Environment, 2023, 880, 163209. 32 Ruan S S, Liu L, Zhu M B, et al. Journal of Cleaner Production, 2023, 138269. 33 Qiao H, Zuo Y, Qu J, et al. Clean Coal Technology, 2023, 29(S2), 109(in Chinese). 乔会, 左岳, 屈洁, 等. 洁净煤技术, 2023, 29(S2), 109. 34 Ji G X, Peng X Q, Wang S P, et al. Construction and Building Materials, 2021, 295, 123619. 35 Lu Q Q. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1), 252(in Chinese). 陆青清. 吉林大学学报(工学版), 2021, 51(1), 252. 36 Birnin-Yauri U A, Glasser F P. Cement and Concrete Research, 1998, 28(12), 1713. 37 Shi Z G, Geiker M R, Lothenbach B, et al. Cement and Concrete Composites, 2017, 78, 73. 38 Kim T, Olek J. Transportation Research Record, SAGE Publications Inc, 2012, 2290(1), 10. 39 Yan A Y, Ni W, Huang X Y, et al. Chinese Journal of Engineering, 2016, 38(7), 899(in Chinese). 阎爱云, 倪文, 黄晓燕, 等. 工程科学学报, 2016, 38(7), 899. 40 Li Z Z, Zhang Y Y, Zhao H Y, et al. Construction and Building Materials, 2019, 213, 265. 41 Li Z Z, Guan Y, Zhao H Y, et al. Journal of Materials Science and Engineering, 2019, 37(1), 119(in Chinese). 李祖仲, 关羽, 赵红艳, 等. 材料科学与工程学报, 2019, 37(1), 119. 42 Liu H T, Li Y, Yu Y J, et al. Journal of China University of Petroleum(Edition of Natural Science), 2025, 49(1), 211. (in Chinese). 刘慧婷, 李妍, 于永金, 等. 中国石油大学学报(自然科学版), 2025, 49(1), 211. 43 Ruan S S, Liu L, Shao C C, et al. Construction and Building Materials, 2023, 392, 132019. 44 Wu Z W. Journal of the Chinese Ceramic Society, 1979(3), 262(in Chinese). 吴中伟. 硅酸盐学报, 1979 (3), 262. 45 Li M Y. China Resources Comprehensive Utilization, 2018, 36(5), 9(in Chinese). 李明艳. 中国资源综合利用, 2018, 36(5), 9. 46 Zhou Y H, Zhang W W. Mining Research and Development, 2023, 43(10), 27(in Chinese). 周艳华, 张伟伟. 矿业研究与开发, 2023, 43(10), 27. 47 Liu L, Fang Z Y, Qi C C, et al. Construction and Building Materials, 2018, 179, 254. 48 Yan P Y, Chen W Y, Yang J. Cement, 2023(1), 1(in Chinese). 阎培渝, 陈炜一, 杨剑. 水泥, 2023(1), 1. |
|
|
|