INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Preparation of High-strength Bismuth Oxide Ceramics via Cold Pressing and Pressureless Sintering |
XIAO Shijie1, MAO Feng1, ZOU Qing2, ZENG Xian2, YAN Qingzhi1,*
|
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 China Nuclear Power Technology Research Institute, Shenzhen 518000, Guangdong, China |
|
|
Abstract High-density and high-strength bismuth oxide ceramics were prepared by powder metallurgy. The effects of pressing pressure and sintering temperature on the microstructure and mechanical properties were investigated. The results indicate that the mechanical properties of the ceramics are influenced by the interaction of these two factors. Specifically, the flexural strength of the ceramics increases monotonically with the increase in pressing pressure at low temperature (580 ℃), initially increases and then decreases at medium temperature (630 ℃ and 680 ℃), and exhibits bubble formation and penetrative cracks at high temperature (730 ℃). The variation in mechanical properties is attributed to phase changes and the accompanying volume changes during sintering. During the heating process, the α-Bi2O3 phase transformed into the δ-Bi2O3 phase. Upon cooling, the δ-Bi2O3 phase converted to both the γ-Bi2O3 and α-Bi2O3 phases, leading to volume expansion and increased internal stress. Higher pressing pressures and sintering temperature result in greater phase transformation stress, which in turn reduces the strength of the ceramics. The relative density and flexural strength of the prepared bismuth oxide ceramics reached 95.9% and 90.6 MPa, respectively, at a pressing pressure of 270 MPa and a sintering temperature of 630 ℃.
|
Published: 15 August 2025
Online: 2025-08-15
|
|
|
|
1 Li W, Zhou K C, Yang H. Journal of Materials Science and Engineering, 2004(1), 154(in Chinese). 李卫, 周科朝, 杨华. 材料科学与工程学报, 2004(1), 154. 2 Mane S A, Kashale A A, Kamble G P, et al. Journal of Alloys and Compounds, 2022, 926, 166722. 3 Liu R, Ma L, Niu G, et al. Advanced Functional Materials, 2017, 27(29), 1701635. 4 Sohail A, Shah M A, Majid K. ECS Journal of Solid State Science and Technology, 2023, 12(1), 11001. 5 Shuk P, Wiemhöfer H D, Guth U, et al. Solid State Ionics, 1996, 89, 179. 6 Lee K T, Yoon H S, Wachsman E D. Journal of Materials Research, 2012, 27(16), 2063. 7 Selvamani T, Anandan S, Granone L, et al. Materials Chemistry Frontiers, 2018, 2(9), 1664. 8 Labib S. Journal of Saudi Chemical Society, 2017, 21(6), 664. 9 Zou W, Hao W C, Xin X, et al. Acta Inorganic Chemistry, 2009, 25(11), 1971(in Chinese). 邹文, 郝维昌, 信心, 等. 无机化学学报, 2009, 25(11), 1971. 10 Zhang Z G, Wang X F, Wang L L, et al. Silicate Bulletin, 2008(2), 411(in Chinese). 张争光, 王秀峰, 王莉丽, 等. 硅酸盐通报, 2008(2), 411. 11 Wu S, Wei X, Wang X, et al. Journal of Materials Science & Technology, 2010, 26(5), 472. 12 Raghvendra, Singh P. Journal of the European Ceramic Society, 2015, 35(5), 1485. 13 Lee H, Park J, Lim Y, et al. Ceramics International, 2022, 48(2), 2865. 14 Xu D, Shi L, Wu Z, et al. Journal of the European Ceramic Society, 2009, 29(9), 1789. 15 Fruth V, Ianculescu A, Berger D, et al. Journal of the European Ceramic Society, 2006, 26(14), 3011. 16 Song J, Zhu G, Xu H, et al. Ceramics International, 2020, 46(9), 13848. 17 Скобеев Д А, Легких А Ю. Вопросы Атомной Науки И Техники, 2021(3), 184. 18 Mukhopadhyay A, Basu B. International Materials Reviews, 2007, 52(5), 257. 19 Lu K. International Materials Reviews, 2008, 53(1), 23. 20 Torralba J M, Campos M. Revista de Metalurgia, 2014, 50(2), e017. 21 Lóh N J, Simão L, Faller C A, et al. Ceramics International. 2016, 42(11), 12556. 22 Fang Z Z, Wang H. International Materials Reviews, 2013, 53(6), 326. 23 Hu L, Wang C. Ceramics International. 2010, 36(5), 1697. 24 Olevsky E A, Tikare V, Garino T. Journal of the American Ceramic Society, 2006, 89(6), 1914. 25 Galotta A, Sglavo V M. Journal of the European Ceramic Society, 2021, 41(16), 1. 26 Gandhi A C, Chi-yuan L, Kuan-ting W, et al. Nanoscale, 2020, 12(47), 24119. 27 Vila M, Díaz-Guerra C, Piqueras J. Materials Chemistry and Physics, 2012, 133(1), 559. 28 Leng D, Wang T, Du C, et al. Ceramics International, 2022, 48(13), 18270. 29 Cornei N, Tancret N, Abraham F, et al. Inorganic Chemistry, 2006, 45(13), 4886. 30 Li R, Zhen Q, Guo S Q, et al. Journal of Functional Materials, 2006(11), 1828(in Chinese). 李榕, 甄强, 郭曙强, 等. 功能材料, 2006(11), 1828. 31 Ruggieri C, Dodds R H. Engineering Fracture Mechanics, 2018, 187, 381. 32 Qian G, Lei W, Zhu S, et al. Procedia Structural Integrity, 2018, 13, 2174. 33 Jivkov A P, Ford M, Yankova M, et al. Procedia Structural Integrity, 2019, 23, 39. 34 He J Y, Wu Y X, Sun W, et al. Chinese Journal of Nonferrous Metals, 2022, 32(5), 1444(in Chinese). 何建勇, 吴云霞, 孙伟, 等. 中国有色金属学报, 2022, 32(5), 1444. 35 Atou T, Faqir H, Kikuchi M, et al. Materials Research Bulletin, 1998, 33(2), 289. 36 Harwig A H. Zeitschrift für Anorganische und Allgemeine Chemie, 1978, 444(1), 151. |
|
|
|