| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Effect of Loading Frequency on Corrosion Fatigue Crack Growth Behavior of EH36/EH690 Dissimilar High-strength Steel Welded Joints |
| WANG Mengna1, GAO Xudong2,*, SHAO Yongbo1, ZHU Hailong3, DU Xiyun4
|
1 School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China 2 School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China 3 China National Offshore Oil Corporation, Beijing 100010, China 4 China National Petroleum Corporation Southwest Oil and Gas Field Branch Northwest Sichuan Gas Mine, Mianyang 621700, Sichuan, China |
|
|
|
|
Abstract To investigate the effect of loading frequency on the corrosion fatigue crack growth behavior of EH36/EH690 dissimilar high-strength steel welded joints in a fully submerged seawater environment, corrosion fatigue crack growth tests were conducted at different loading frequencies (f=0.2, 0.3, 0.5, and 0.7 Hz) on the heat-affected zone (HAZ36) material near the EH36 base metal, the heat-affected zone (HAZ690) material near the EH690 base metal, and the weld metal (WM). The crack length-fatigue life curves and corrosion fatigue crack growth rate-stress intensity factor range curves were obtained for the materials in different regions of the welded joints. The results indicate that the presence of the seawater corrosion environment significantly accelerates the fatigue crack growth rate of the welded joints. Under the same loading frequency, the corrosion fatigue crack growth rates(CFCGR) vary in different regions of the welded joints in the seawater corrosion environment, with an order from largest to smallest of CFCGRHAZ36>CFCGRWM>CFCGRHAZ690. Under different loading frequencies, the materials in the HAZ36, HAZ690, and WM regions all exhibit a trend of higher corrosion fatigue crack growth rates and shorter fatigue life as the frequency decreases. Microscopic fracture surface analysis reveals that the fatigue fracture surfaces of CT specimens under all conditions display transgranular quasi-cleavage fracture characteristics.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Zhang T, Liang Y L, Wei L Q, et al. MW Metal Forming, 2022(2), 20(in Chinese).
张涛, 梁雅琳, 魏丽芹, 等. 金属加工(热加工), 2022(2), 20.
2 Li L P, Yang M H, Du J F, et al. Transactions of Materials and Heat Treatment, 2023, 44(11), 200(in Chinese).
李林平, 杨茂鸿, 杜晋峰, 等. 材料热处理学报, 2023, 44(11), 200.
3 Ren L, Fan Y T. Rechuli Jishu Yu Zhuangbei, 2021, 42(5), 29(in Chinese).
任玲, 范玉婷. 热处理技术与装备, 2021, 42(5), 29.
4 Wang Z P, Zhu M L, Xuan F Z. Transactions of the China Welding Institution, 2024, 45(7), 67(in Chinese).
王志鹏, 朱明亮, 轩福贞. 焊接学报, 2024, 45(7), 67.
5 Li Y. Stress corrosion cracking behavior and mechanism of E690 steel and welded joint in simulated seawater. Ph. D. Thesis, University of Science and Technology Beijing, China, 2019(in Chinese).
李永. EH690钢及焊接接头模拟海水环境中应力腐蚀行为与机理研究. 博士学位论文, 北京科技大学, 2019.
6 Feng R, Yang F M, Shao Y B, et al. Structures, 2024, 62, 106141.
7 Lu Y, Wang H Y, Wang P P, et al. Journal of Constructional Steel Research, 2024, 219, 108744.
8 Lu Y, Wang R Q, Han Q H, et al. Engineering Failure Analysis, 2022, 134, 105977.
9 Lu Y, Yu Z C, Wang R Q. Materials Reports, 2024, 38(1), 22090030(in Chinese).
芦燕, 余振超, 王如琦. 材料导报, 2024, 38(1), 22090030.
10 Guo Y X, Wang Z X. Modern Manufacturing Technology and Equipment, 2024, 60(1), 10(in Chinese).
郭逸轩, 王泽溪. 现代制造技术与装备, 2024, 60(1), 10.
11 Lyu H. Study on corrosion behavior of SUS304/Q345 laser-MAG hybrid welded joint. Master’s Thesis, Southwest Jiaotong University, China, 2019(in Chinese).
吕航. SUS304/Q345异种钢激光-MAG复合焊接头腐蚀行为研究. 硕士学位论文, 西南交通大学, 2019.
12 Zhong Y, Shao Y B, Gao X D, et al. Journal of Constructional Steel Research, 2023, 210, 108104.
13 Liu Z Y, Tang S, Chen J, et al. Angang Technology, 2015(1), 1(in Chinese).
刘振宇, 唐帅, 陈俊, 等. 鞍钢技术, 2015(1), 1.
14 Xu Q, Shao F, Bai L Y, et al. Journal of Central South University, 2021, 28(1), 58.
15 Shen X K, Gao X D, Shao Y B, et al. International Journal of Fatigue, 2024, 189, 108572.
16 Luo X F, Shi J, Shao Y B, et al. China Offshore Oil and Gas, 2023, 35(4), 181(in Chinese).
罗霞飞, 石健, 邵永波, 等. 中国海上油气, 2023, 35(4), 181.
17 Su M L, Yang S Y, Xu L Y, et al. Journal of Materials Research and Technology, 2023, 27, 2007.
18 Gan Z H, Zhao H L, Li X D, et al. Welded Pipe and Tube, 2024, 47(6), 7(in Chinese).
甘正红, 赵海林, 李学达, 等. 焊管, 2024, 47(6), 7.
19 Wang Z F. Journal of North China Institute of Aerospace Engineering, 2013, 23(4), 26(in Chinese).
王兆富. 北华航天工业学院学报, 2013, 23(4), 26.
20 Atta-Agyemang S A, Kesse M A, Kah P, et al. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231(3), 369.
21 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Recommended joint preparation for gas welding, manual metal arc welding, gas-shield arc welding and beam welding: GB/T 985. 1-2008, Standards Press of China, China, 2008(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口: GB/T 985. 1-2008, 中国标准出版社, 2008.
22 International Organization for Standardization. Welding-Fusion-weld joints in steel, nickel, titanium and their alloys (beam welding excluded)-Quality levels for imperfections: ISO 5817-2014(B), Switzerland, 2014.
23 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Metallic materials-fatigue testing-fatigue crack growth method, Standardization:GB/T 6398-2017, Standards Press of China, China, 2017(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 金属材料疲劳裂纹扩展速率试验方法: GB/T 6398-2017, 中国标准出版社, 2017.
24 Xu Y L. Ship & Boat, 2016, 27(5), 44(in Chinese).
许蕴蕾. 船舶, 2016, 27(5), 44.
25 Liu D. Study on corrosion fatigue crack propagation characteristics and mechanisms of offshore engineering steel. Ph. D. Thesis, Wuhan University of Science and Technology, China, 2023(in Chinese).
刘冬. 海洋工程用钢腐蚀疲劳裂纹扩展特性及机理研究. 博士学位论文, 武汉科技大学, 2023.
26 Adedipe O, Brennan F, Kolios A. Marine Structures, 2015, 42, 115.
27 Gao X D, Shao Y B, Guo Y J, et al. Materials Reports, 2022, 36(15), 164(in Chinese).
高旭东, 邵永波, 郭永健, 等. 材料导报, 2022, 36(15), 164.
28 Li Y L. Fatigue crack growth performance of bridgesteel: effect of stress ratio, microstructure and single overload. Master’s Thesis, Guangxi University, China, 2023(in Chinese).
李友林. 桥梁钢的疲劳裂纹扩展性能:应力比、微观组织及单峰过载的影响. 硕士学位论文, 广西大学, 2023.
29 Wei L L, Pan Q L, Huang H F, et al. International Journal of Fatigue, 2014, 66, 55.
30 Heshmati N, Hoseini-Athar M, Borgenstam A, et al. International Journal of Fatigue, 2024, 184, 108278.
31 Pan Y F, Guo H, Yuan W, et al. Copper Engineering, 2023(3), 70(in Chinese).
潘一帆, 郭桦, 苑伟, 等. 铜业工程, 2023(3), 70. |
|
|
|