METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
First-principles Simulation Prediction of Structure and Properties of High-entropy Alloys |
YAN Su, DOU Yankun*, CAO Jinli, HE Xinfu
|
Division of Reactor Engineering Technology Research, China Institute of Atomic Energy, Beijing 102400, China |
|
|
Abstract High-entropy alloys (HEAs) are characterized by their complex composition, and the multi-principal element effect, exhibiting exceptional comprehensive performance and broad application prospects. However, the design and performance prediction of high-entropy alloys face significant challenges, necessitating the use of effective theoretical models and computational methods. First-principles methods, based on the principles of quantum mechanics, offer a microscopic scale simulation approach that explores the structure and properties of materials from the atomic and electronic levels, providing new insights and tools for the study of high-entropy alloys. This paper summarizes the current computational models in first-principles calculations for high-entropy alloys, including the coherent potential approximation (CPA), locally self-consistent multiple scattering (LSMS), special quasi-random structures (SQS), and virtual crystal approximation (VCA), reviewes the application of first-principles in high-entropy alloys, introduces the prediction of the electronic structure, phase stability, and mechanical properties of high-entropy alloys with first-principles methods, and verifies the reliability of the computational models. Finally, it outlines the limitations of first-principles methods in the modeling, structure, and performance prediction of high-entropy alloys, offering a perspective on their future applications. These findings may provide valuable references and insights for both theoretical research and the practical application of high-entropy alloys.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring A, 2004, 375, 213. 3 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345(6201), 1153. 4 Koelj P, Vrtnik S, Jelen A, et al. Physical Review Letters, 2014, 113(10), 107001. 5 Luo H, Li Z, Raabe D. Scientific Reports, 2017, 7, 9892. 6 Luo H, Lu W, Fang X, et al. Materials Today, 2018, 21(10), 1003. 7 Segui C. Journal of Applied Physics, 2014, 115(11), 113903. 8 Egami T, Guo W, Rack P D, et al. Metallurgical and Materials Transactions A, 2014, 45A(1), 180. 9 Nagase T, Anada S, Rack P D, et al. Intermetallics, 2013, 38, 70. 10 Baerends E J, Ellis D E, Ros P. Chemical Physics, 1973, 2(1), 41. 11 Kohn W, Hohenberg P, 1964. 12 Yan H, Yang W, Song X M, et al. Journal of Beijing University of Technology, 2004(2), 210 (in Chinese). 严辉, 杨巍, 宋雪梅, 等. 北京工业大学学报, 2004(2), 210. 13 Zhang H L, Cai D D, Sun X, et al. Journal of Materials Science and Technology, 2022, 121, 105. 14 Liang H Y, Bai R, He X L, et al. Materials Reports, 2018, 32(2), 333 (in Chinese). 梁红玉, 白瑞, 贺秀丽, 等. 材料导报, 2018, 32(2), 333. 15 Shan X H, Lei W N, Cong M Q, et al. Tool Engineering, 2023, 57(6), 10 (in Chinese). 单星海, 雷卫宁, 丛孟启, 等. 工具技术, 2023, 57(6), 10. 16 Jasiewicz K, Wiendlocha B, Korben P, et al. Physica Status Solidi-Rapid Research Letters, 2016, 10(5), 415. 17 Gyorffy B. Physical Review B, 1972, 5, 2382. 18 Wang, Stocks, Shelton, et al. Physical Review Letters, 1995, 75(15), 2867. 19 Eisenbach M, Larkin J, Lutjens J, et al. Computer Physics Communications, 2015, 259. 20 Zunger A, Wei S H, Ferreira L G, et al. Physical Review Letters, 1990, 65(3), 353. 21 Gao M C, Niu C, Jiang C, et al. High-entropy alloys: fundamentals and applications, Springer International Publishing, Cham, 2016, pp.333. 22 Bellaiche L, Vanderbilt D. Physical Review B, 2000, 61(12), 7877. 23 Zhang N, Gankov, Li Z M. Special Casting & Nonferrous Alloys, 2022, 42(3), 296 (in Chinese). 张楠, 甘科夫, 李志明. 特种铸造及有色合金, 2022, 42(3), 296. 24 Wei S H, Ferreira L G, Bernard J E, et al. Physical Review B: Condensed Matter, 1990, 42(15), 9622. 25 Wang S. First-principles study of properties of medium and high-entropy alloys. Master's Thesis, North University of China, China, 2019 (in Chinese). 王硕. 等组元中、高熵合金性能的第一性原理研究. 硕士学位论文, 中北大学, 2019. 26 Gao M C, Suzuki Y, Schweiger H, et al. Journal of Physics-Condensed Matter, 2013, 25(7), 075402. 27 Zaddach A J, Niu C, Koch C C, et al. JOM Journal of the Minerals Metals and Materials Society, 2013, 65(12), 1780. 28 Lu Z W, Wei S H, Zunger A. Physical Review B: Condensed Matter, 1992, 45(18), 10314. 29 Wei S H, Zunger A. Journal of Applied Physics, 1995, 78(6), 3846. 30 Jiang C, Stanek C R, Sickafus K E, et al. Physical Review B: Condensed Matter, 2009, 79(10), 104203. 31 King D J M, Burr P A, Obbard E G, et al. Journal of Nuclear Materials, 2017, 488, 70. 32 Middleburgh S C, King D M, Lumpkin G R, et al. Journal of Alloys and Compounds, 2014, 599, 179. 33 Karabin M, Mondal W R, Oestlin A, et al. Journal of Materials Science, 2022, 57(23), 10677. 34 Wang S, Xiong J, Li D, et al. Materials Letters, 2021, 282, 128754. 35 Ren X L, Zhang W W, Wu X Y, et al. Acta Physica Sinica, 2020, 69(4), 12 (in Chinese). 任县利, 张伟伟, 伍晓勇, 等. 物理学报, 2020, 69(4), 12. 36 Troparevsky M C, Morris J R, Daene M, et al. JOM Journal of the Mi-nerals Metals and Materials Society, 2015, 67(10), 2350. 37 Guo S, Liu C T. Progress in Natural Science-Materials International, 2011, 21(6), 433. 38 Ren M X, Li B S, Fu H Z. Transactions of Nonferrous Metals Society of China, 2013, 23(4), 991. 39 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1. 40 Miracle D B, Miller J D, Senkov O N, et al. Entropy, 2014, 16(1), 494. 41 Guo S, Hu Q, Ng C, et al. Intermetallics, 2013, 41, 96. 42 Otto F, Yang Y, Bei H, et al. Acta Materialia, 2013, 61(7), 2628. 43 Huang S, Vida A, Li W, et al. Applied Physics Letters, 2017, 110(24), 241902. 44 Zhou L. First-principles study of mechanical properties of AlxCoCrFeNi (x=1, 2) high-entropy alloys. Master's Thesis, Zhengzhou University, China, 2011 (in Chinese). 周磊. 高熵合金AlxCoCrFeNi(x=1, 2)力学性质的第一性原理研究. 郑州大学, 2012. 45 Born M, Huang K, Lax M. American Journal of Physics, 1955, 23, 474. 46 Xiao H, Liu Y, Wang K, et al. Acta Metallurgica Sinica-English Letters, 2021, 34(4), 455. 47 Pugh S F. Philosophical Magazine Series 6, 1954, 45, 823. 48 Wu H, Huang S, Zhu C, et al. Progress in Natural Science-Materials International, 2020, 30(2), 239. 49 Quong A A, Liu A Y. Physical Review B, 1997, 56(13), 7767. 50 Wu J, Yang Z, Xian J, et al. Frontiers in Materials, 2020, 7, 590143. 51 Tian F Y, Delczeg L, Chen N X, et al. Physical Review B, 2013, 88(8), 085128. 52 Jiang Z J, He J Y, Wang H Y, et al. Materials Research Letters, 2016, 4(4), 226. 53 Foreman A J E. Acta Metallurgica, 1955, 3, 322. 54 Stocks G M, Butler W H. Physical Review Letters, 1982, 48(1), 55. 55 Wang D, Liu L, Chen M, et al. Acta Materialia, 2020, 199, 443. 56 Kubo R. Journal of the Physical Society of Japan, 1957, 12, 570. 57 Butler W H. Physical Review B: Condensed Matter, 1985, 31(6), 3260. 58 Mu S, Samolyuk G D, Wimmer S, et al. NPJ Computational Materials, 2019, 5(1), 1112. 59 Raghuraman V, Wang Y, Widom M. Applied Physics Letters, 2021, 119(12), 121903. 60 Lu P, Saal J E, Olson G B, et al. Scripta Materialia, 2018, 153, 19. 61 Duong T, Wang Y, Yan X, et al. DOI:10.48550/arXiv. 2104. 10590. 62 Yen C C, Lu H N, Tsai M H, et al. Corrosion Science, 2019, 157, 462. 63 Lu C Y, Niu L L, Chen N J, et al. Nature Communications, 2016, 7, 13564. 64 Pickering E J, Carruthers A W, Barron P J, et al. Entropy, 2021, 23(1), 98. 65 Zhang Y W, Egami T, Weber W J. MRS Bulletin, 2019, 44(10), 798. 66 Zhang P, Jiang L, Yang J X, et al. Materials Reports, 2022, 36(14), 5 (in Chinese). 张平, 蒋丽, 杨金学, 等. 材料导报, 2022, 36(14), 5. 67 Zhang Y W, Zhao S J, Weber W J, et al. Current Opinion in Solid State & Materials Science, 2017, 21(5), 221. 68 Zong Y, Hashimoto N, Oka H. Nuclear Materials and Energy, 2022, 31, 101158. 69 Wang L F, Dou Y K, Zhao Y P, et al. Atomic Energy Science and Technology, 2023, 57(S1), 174 (in Chinese). 王林枫, 豆艳坤, 赵永鹏, 等. 原子能科学技术, 2023, 57(S1), 174. 70 Xu B, Fu S Z, Zhao S J, et al. Materials Reports, 2020, 34(17), 17031 (in Chinese). 徐彪, 付上朝, 赵仕俊, 等. 材料导报, 2020, 34(17), 17031. 71 Zhao S, Zhang Y, Weber W J. Encyclopedia of Materials: Metals and Alloys,2022,2, 533. 72 Norgett M J, Robinson M T, Torrens I M. Nuclear Engineering and Design, 1975, 33(1), 50. 73 Zhao S J, Liu B, Samolyuk G D, et al. Journal of Nuclear Materials, 2020, 529, 151941. 74 Hargather C Z. High-entropy materials: theory, experiments, and applications, Springer International Publishing, Cham, 2022, pp.315. 75 Zhao S J. Journal of Materials Science & Technology, 2020, 44, 133. 76 Dou Y K, Jin K, He X F, et al. Atomic Energy Science and Technology, 2019, 53(10), 1868 (in Chinese). 豆艳坤, 靳柯, 贺新福, 等. 原子能科学技术, 2019, 53(10), 1868. |
|
|
|