INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress in Machine Learning-based Design of Spectrally Selective Infrared Radiating Materials |
GE Yufei, LIU Dongqing*, CHENG Haifeng, GUI Boheng, WANG Xinfei, JIA Yan
|
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace and Engineering, National University of Defense Techno-logy, Changsha 410073, China |
|
|
Abstract The rapid development of thermophotovoltaics, radiative cooling, gas sensing and infrared stealth has proposed significant demands on spectrally selective infrared radiating materials. It is usually difficult for a single kind of material to realize complicated spectral selectivity. Consequently, selecting various materials and designing the structure are necessary to meet the requirements of different application scenarios. Howe-ver, the design parameter space of spectrally selective infrared radiating materials is large, and the conventional "trial-and-error" design is difficult to realize global optimization and deal with the multi-objective constraint problems. Due to the development of artificial intelligence and big data technology, rapid global optimization of spectrally selective infrared radiation material can be achieved by constructing a machine learning model for the design of parameters such as material composition, arrangement mode and film layer thickness. This paper mainly outlines the latest research progress of machine learning-based design of multilayer film and metasurface, analyzes the advantages and problems of machine learning-assisted design of spectrally selective infrared radiation materials, and puts forward the future development trend.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Zhao Y T, Yang F, Song J L, et al. Journal of Applied Physics, 2023, 133(12), 124904. 2 Hu R, Song J, Liu Y, et al. Nano Energy, 2020, 72, 104687. 3 Noureen S, Ijaz S, Javed I, et al. Optical Materials Express, 2024, 14(4), 1025. 4 Sheng C, An Y, Du J, et al. ACS Photonics, 2019, 6(10), 2545. 5 Yao K, Ma H, Huang M, et al. ACS Applied Nano Materials, 2019, 2(9), 5512. 6 Yang Z, Ishii S, Yokoyama T, et al. ACS Photonics, 2017, 4(9), 2212. 7 Xu H, Wu P, Zhu C, et al. Journal of Materials Chemistry C, 2013, 1(38), 6087. 8 Xi W, Liu Y D, Song J L, et al. Optics Letters, 2021, 46(4), 888. 9 Deng Z, Su Y, Qin W, et al. ACS Applied Nano Materials, 2022, 5(4), 5119. 10 Kim J, Park C, Hahn J W. Advanced Optical Materials, 2022, 10(6), 1. 11 Pan M, Huang Y, Li Q, et al. Nano Energy, 2020, 69, 104449. 12 Fan S, Li W. Nature Photonics, 2022, 16(3), 182. 13 Hu R, Xi W, Liu Y, et al. Materials Today, 2021, 45, 120. 14 Chen F Q, Liu Y, Liu X J, et al. Applied Physics Letters, 2023, 122(19), 191702. 15 Pang Y, Li Y, Yan M, et al. Optics Express, 2018, 26(9), 11950. 16 Hu J, Bandyopadhyay S, Liu Y H, et al. Frontiers in Physics, 2021, 8, 2296. 17 Walia S, Shah C M, Gutruf P, et al. Applied Physics Reviews, 2015, 2(1), 1. 18 Abdollahramezani S, Hemmatyar O, Taghinejad M, et al. Nature Communications, 2022, 13(1), 1. 19 Keawmuang H, Badloe T, Lee C, et al. Solar Energy Materials and Solar Cells, 2024, 271, 112848. 20 Xi W, Lee Y J, Yu S, et al. Nature Communications, 2023, 14(1), 4694. 21 Chen D, Colas J, Mercier F, et al. Surface and Coatings Technology, 2019, 377, 124872. 22 Kudyshev Z A, Kildishev A V, Shalaev V M, et al. Applied Physics Reviews, 2020, 7(2), 1. 23 Molesky S, Lin Z, Piggott A Y, et al. Nature Photonics, 2018, 12(11), 659. 24 Chen Z, Yu S, Yuan C, et al. Journal of Applied Physics, 2023, 134(20), 203101. 25 Naseri P, Hum S V. IEEE Transactions on Antennas and Propagation, 2021, 69(9), 5725. 26 Wen S Z, Dang C Z, Liu X L. Applied Physics Letters, 2022, 121(7), 071101. 27 Jain P, Chhabra H, Chauhan U, et al. Materials Chemistry and Physics, 2023, 307, 128180. 28 Liao T, Zhao C Y, Wang H, et al. International Journal of Heat and Mass Transfer, 2024, 219, 124831. 29 Ma W, Chen W, Li D, et al. Nanophotonics, 2023, 12(18), 3589. 30 Vasudevan R, Pilania G, Balachandran P V. Journal of Applied Physics, 2021, 129(7), 070401. 31 Riganti R, Negro L D. Applied Physics Letters, 2023, 123(17), 171104. 32 Yu S, Zhou P, Xi W, et al. Light:Science & Applications, 2023, 12(1), 2755. 33 Qiu Q, Zhou D, Zhang J, et al. Optics Letters, 2023, 48(22), 6000. 34 Chen J, Li X, Chen Y, et al. Photonics, 2023, 10(5), 546. 35 Nong J, Li N, Jiang X, et al. Optics Express, 2024, 32(3), 3379. 36 Nong J, Jiang X, Wei X, et al. Optics Express, 2023, 31(20), 33622. 37 Zhang H, Huang Z, Ding M, et al. Science Advances, 2023, 9(15), Eadf3737. 38 Deb K, Pratap A, Agarwal S, et al. IEEE Transactions on Evolutionary Computation, 2002, 6(2), 182. 39 Wang Q, Huang Z, Li J, et al. Nano Letters, 2023, 23(4), 1144. 40 Guan Q, Raza A, Mao S S, et al. ACS Photonics, 2023, 10(3), 715. 41 Zhan T, Liu Q S, Sun Y J, et al. Optics Communications, 2022, 510, 127920. 42 Chen Y, Zhao T, Chang Y, et al. Next Energy, 2024, 3, 100046. 43 Zhang Y, Chen Y, Wang T, et al. Opto-Electronic Advances, 2024, 7(4), 230194. 44 Muhammad, Kennedy J, Lim C W. Materials Today Communications, 2022, 33, 104606. 45 Chen W, Gao Y, Li Y, et al. Advanced Science, 2023, 10(13), e2206718. 46 Pan Q, Zhou S, Chen S, et al. Optics Express, 2023, 31(15), 23944. 47 Zhang W, Wang B, Zhao C. ACS Applied Energy Materials, 2021, 4(2), 2004. 48 Kim S, Jung S, Bobbitt A, et al. Cell Reports Physical Science, 2024, 5(3), 101847. 49 Sakurai A, Yada K, Simomura T, et al. ACS Central Science, 2019, 5(2), 319. 50 Yu S, Zhou P, Wang X, et al. Light:Science & Applications, 2023, 12(1), 291. 51 Zhu Y, Zhang L, Wang J, et al. Journal of Alloys and Compounds, 2022, 920, 165977. 52 Zhu H Z, Li Q, Tao C N, et al. Nature Communications, 2021, 12(1), 1805. 53 Shim H B, Han K, Song J, et al. Advanced Optical Materials, 2022, 10(6), 1. 54 Wang K X, Wang B K. Materials Science Forum, 2018, 937(1), 97. 55 Negm A, Bakr M H, Howlader M M R, et al. Nanomaterials, 2023, 13(23), 3073. 56 Sun K, Vassos E, Yan X, et al. Advanced Optical Materials, 2022, 10(17), 1. 57 Zhu C L, Bamidele Ea, Shen X Y, et al. Chemical Reviews, 2024, 124(7), 4258. 58 Liu C X, Yu G L. Journal of Computational Design and Engineering, 2023, 10(2), 602. 59 Molesky S, Lin Z, Piggott A Y, et al. Nature Photonics, 2018, 12(11), 659. 60 Sell D, Yang J, Doshay S, et al. Nano Letters, 2017, 17(6), 3752. 61 Frellsen L F, Ding Y, Sigmund O, et al. Optics Express, 2016, 24(15), 16866. 62 Jafar-Zanjani S, Inampudi S, Mosallaei H. Scientific Reports, 2018, 8(1), 1. 63 Li S Y, An M, Zheng Z H, et al. Applied Optics, 2023, 62(16), 4359. 64 He M, Nolen J R, Nordlander J, et al. Nature Materials, 2021, 20(12), 1663. 65 Su W, Ding Z P, Luo Y L, et al. Solar Energy Materials And Solar Cells, 2023, 260, 112488. 66 Kudyshev Z A, Kildishev A V, Shalaev V M, et al. Nanophotonics, 2020, 10(1), 371. 67 Zhu R C, Wang J, Jiang J M, et al. Photonics Research, 2022, 10(5), 1146. 68 Gu L L, Liu H Z, Wei Z C, et al. Photonics, 2023, 10(8), 874. 69 Liu X H, Wang P, Xiao C Y, et al. Advanced Functional Materials, 2023, 33(11), 2212068. 70 Wang J N, Zhan Y H, Ma W, et al. iScience, 2023, 26(6), 106857. 71 Park M, Grbčić L, Motameni P, et al. Advanced Science, 2024, 11(26), e2401951. 72 Ma W, Liu Z, Kudyshev Z A, et al. Nature Photonics, 2020, 15(2), 77. 73 Wang L, Dong J, Zhang W J, et al. Nanomaterials, 2023, 13(6), 1030. 74 García-Esteban J J, Bravo-Abad J, Cuevas J C. Physical Review Applied, 2021, 16(6), 064006. 75 Sullivan J, Mirhashemi A, Lee J. Scientific Reports, 2022, 12(1), 1. 76 Sullivan J, Mirhashemi A, Lee J. Scientific Reports, 2023, 13(1), 7382. 77 Zheng Y J, Dai H J, Wu J Y, et al. Frontiers in Physics, 2022, 10, 1069722. 78 Kim E, Huang K, Saunders A, et al. Chemistry of Materials, 2017, 29(21), 9436. 79 Kononova O, Huo H, He T, et al. Scientific Data, 2019, 6(1), 203. 80 Huang S, Cole J M. Scientific Data, 2020, 7(1), 260. 81 Dong Q, Cole J M. Scientific Data, 2022, 9(1), 193. 82 Zhao J, Cole J M. Scientific Data, 2022, 9(1), 192. 83 Baibakova V, Elzouka M, Lubner S, et al. Scientific Data, 2022, 9(1), 589. |
|
|
|