| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Recent Progress and Development Trend of Perovskite-based Tandem Solar Cells |
| WANG Qinqin1,*, HUANG Wei1, GU Siwen2, DING Jianning1
|
1 Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225101, Jiangsu, China 2 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China |
|
|
|
|
Abstract The power conversion efficiency of single-junction solar cells is limited by the Shockley-Quiesser limit. An effective way to realize high efficiency is to develop tandem solar cells. With the rapid development of organic/inorganic perovskite solar cells in recent years, the excellent photovoltaic properties and tunable bandgap of perovskite materials make them potential candidates for the development of tandem solar perovskite cells in combination with silicon, CIGS and organic solar cells. This paper introduces the types of tandem structures of tandem solar cells;analyzes and discusses the mainstream solar cells with perovskite stacks in terms of two and four terminal structures regarding material selection, regulation of interfacial defects, operating performance, conversion efficiency, and their advantages and disadvantages. At the end, it addresses the five obstacles that tandem solar cells will encounter: device structure, efficiency, large-area fabrication, stability, and cost. It also anticipates the direction of future development from these five angles.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Tang S X, Yan J J, Chen L, et al. Solar Energy Materials and Solar Cells, 2024, 278, 113182. 2 Dutta A, Maiti D, Katarkar A, et al. ACS Applied Bio Materials, 2023, 6 (8), 3266. 3 Werner J, Barraud L, Walter A, et al. ACS Energy Letters, 2016, 1(2), 474. 4 Yu X T, Liu C, Li C, et al. ACS Applied Materials & Interfaces, 2024, 16(24), 31114. 5 Marti A, Luque A. Nature Communications, 2015, 6, 6902. 6 Qiu Z W, Xu Z Q, Li N X, et al. Nano Energy, 2018, 53, 798. 7 Chen B, Yu Z S, Liu K, et al. Joule, 2019, 3(1), 177. 8 Lin H, Yang M, Ru X N, et al. Nature Energy, 2023, 8(8), 789. 9 Leijtens T, Bush K A, Prasanna R, et al. Nature Energy, 2018, 3, 828. 10 Li Z G. In:SNEC 17th International Solar Photovoltaic and Smart Energy Conference & Exhibition. Shanghai, China, 2024(in Chinese). 李振国. SNEC第十七届国际太阳能光伏与智慧能源大会暨展览会. 上海, 2024. 11 Loper P, Moon S J, Nicolas S M D, et al. Physical Chemistry Chemical Physics, 2015, 17(3), 1619. 12 Asmontas S, Gradauskas J, Griguceviciene A, et al. Ukrainian Journal of Physical Optics, 2022, 23(4), 193. 13 Sanglee K, Sakunkaewkasem S, Piromjit C, et al. Solar Energy Materials and Solar Cells, 2023, 253, 112235. 14 Wang Z Y, Zhu X J, Zuo S N, et al. Advanced Functional Materials, 2020, 30(4), 1908298. 15 Samantaray M R, Chander N, Ghosh D S, et al. Applied Physics A, 2022, 128, 111. 16 Lee P H, Wu T T, Li C F, et al. Solar RRL, 2022, 6(4), 2100891. 17 Yao Yu X, Hang P J, Li B, et al. Small, 2022, 18(38), 2203319. 18 Ma X P, Pan J Y, Wang Y L, et al. Chemical Engineering Journal, 2022, 445, 136626. 19 Ma X P. Highly efficient and stable large-area wide bandgap chalcogenide modules and stacked cells. Master’s Thesis, Wuhan University of Technology, China, 2022 (in Chinese). 马先普. 高效稳定大面积宽带隙钙钛矿模组及叠层电池. 硕士学位论文, 武汉理工大学, 2022. 20 Tyagi B, Kumar N, Lee H B, et al. Journal of Alloys and Compounds, 2023, 960, 170970. 21 Yan L, Qiu S D, Yu B H, et al. Advanced Energy and Sustainability Research, 2022, 3(6), 2100199. 22 Kanoun A A, Goumri-Said S, Kanoun M B. International Journal of Energy Research, 2021, 45(7), 10538. 23 Chen B, Baek S W, Hou Y, et al. Nature Communications, 2020, 11, 1257. 24 Chen Y, Ying Z Q, Li X, et al. Nano Energy, 2022, 100, 107529. 25 Fang Z, Zhang F, Qin X J, et al. Acta Physica Sinica, 2023, 72(5), 401 (in Chinese). 方正, 张飞, 秦校军, 等. 物理学报, 2023, 72(5), 401. 26 Mailoa J P, Bailie C D, Johlin E C, et al. Applied Physics Letters, 2015, 106, 121105. 27 Sahli F, Werner J, Kamino B A, et al. Nature Materials, 2018, 17, 820. 28 Zheng J H, Lau C F J, Mehrvarz H, et al. Energy & Environmental Science, 2018, 11, 2432. 29 Zheng J H, Mehrvarz H, Ma F J, et al. ACS Energy Letters, 2018, 3(9), 2299. 30 Shen H P, Omelchenko S T, Jacobs D A, et al. Science Advances, 2018, 4(12), eaau9711. 31 Bush K A, Palmstrom A F, Yu Z S J, et al. Nature Energy, 2017, 2, 17009. 32 Kabakli O S, McMullin K, Messmer C, et, al. Solar RRL, DOI: 10. 1002/solr. 202400454. 33 Bush K A, Manzoor S, Frohna K, et al. ACS Energy Letters, 2018, 3(9), 2173. 34 Mazzarella L, Lin Y H, Kirner S, et al. Advanced Energy Materials, 2019, 9(14), 1803241. 35 Ying Z Q, Guo X C, Du H J, et al. ACS Energy Letters, 2024, 9(8), 4018. 36 Nogay G, Sahli F, Werner J, et al. ACS Energy Letters, 2019, 4(4), 844. 37 Kim C U, Yu J C, Jung E D, et al. Nano Energy, 2019, 60, 213. 38 Kim K, Kim M, Lee H, et al. Small, 2024, 20(38), 2402341. 39 Sharma R K, Srivastava A, Punia U, et al. Sustainable Energy & Fuels, 2024, 8(20), 4799. 40 Nishimura N, Kanda H, Katoh R, et al. Journal of Materials Chemistry A, 2024, 12(26), 15631. 41 Cao F, Zhan S Q, Dai X F, et al. Journal of the American Chemical Society, 2024, 146(17), 11782. 42 Ding Z T, Kan C X, Jiang S G, et, al. Nature Communications, 2024, 15(1), 8453. 43 Hou Y, Aydin E, Bastiani M D, et al. Science, 2020, 367(6482), 1135. 44 Xu J X, Boyd C C, Yu Z S J, et al. Science, 2020, 367(6482), 1097. 45 Kim D, Jung H J, Park I J, et al. Science, 2020, 368(6487), 155. 46 Su S X, Ying Z Q, Chen X K, et al. Acta Energiae Solaris Sinica, 2024, 45(4), 23 (in Chinese). 苏诗茜, 应智琴, 陈邢凯, 等. 太阳能学报, 2024, 45(4), 23. 47 Pei F T, Chen Y H, Wang Q Q, et al. Nature Communications, 2024, 15, 7024. 48 Zhang D Y, Li B, Hang P J, et al. Energy & Environmental Science, 2024, 17, 3848. 49 Bremner S P, Levy M Y, Honsberg C B. Progress in Photovoltaics, 2008, 16(3), 225. 50 Lim J, Park N G, Seok S I, et al. Energy & Environmental Science, 2024, 17(13), 4390. 51 Yao Y Q, Lv F;Luo L, et al. Solar RRL, 2020, 4(3), 1900396. 52 Tong J H, Song Z N, Kim D H, et al. Science, 2019, 364(6439), 475. 53 Nejand B A, Hossain I M, Jakoby M, et al. Advanced Energy Materials, 2020, 10(5), 1902583. 54 Chang Z. Preparation of narrow bandgap Sn-Pb hybrid chalcogenide photovoltaic cells and their applications. Master’s Thesis, Changchun University of Technology, China, 2024 (in Chinese). 常祯. 窄带隙锡-铅混合钙钛矿光伏电池的制备及其应用研究. 硕士学位论文, 长春工业大学, 2024. 55 Jiang F Y, Liu T F, Luo B W, et al. Journal of Materials Chemistry A, 2016, 4, 1208. 56 Shao Y F, Zheng D X, Liu L, et, al. ACS Energy Letters, 2024, 9(10), 4892. 57 Wang C L, Zhao Y, Ma T S, et al. Nature Energy, 2022, 7(8), 744. 58 Zhao D W, Chen C, Wang C L, et al. Nature Energy, 2018, 3(12), 1093. 59 Palmstrom A F, Eperon G E, Leijtens T, et al. Joule, 2019, 3(9), 2193. 60 Yu Z H, Yang Z B, Ni Z Y, et al. Nature Energy, 2020, 5, 657. 61 Lin R X, Xiao K, Qin Z Y, et al. Nature Energy, 2019, 4, 864. 62 Xiao K, Lin R X, Han Q L, et al. Nature Energy, 2020, 5(11), 870. 63 Electronics Quality, 2024(3), 51 (in Chinese). 电子质量, 2024(3), 51. 64 Wang Y R, Lin R X, Liu C S Y, et al. Nature, DOI: 10. 1038/s41586-024-08158-6. 65 Liu X X, Gong J B, Xiao X D. Chinese Science Bulletin (Chinese Version), 2023, 68(24), 3120. 66 Chirila A, Buecheler S, Pianezzi F, et al. Nature Materials, 2011, 10, 857. 67 Bailie C D, Christoforo M G, Mailoa J P, et al. Energy & Environmental Science, 2015, 8, 956. 68 Kim D H, Muzzillo C P, Tong J H, et al. Joule, 2019, 3, 1734. 69 Gharibzadeh S, Hossain I M, Fassl P, et al. Advanced Functional Materials, 2020, 30(19), 1909919. 70 Feurer T, Carron R, Sevilla G T, et al. Advanced Energy Materials, 2019, 9, 1901428. 71 Zhang Y, Tang Z H, Zhang Z Y, et al. Journal of Energy Chemistry, 2024, 97, 622. 72 Todorov T, Gershon T, Gunawan O, et al. Advanced Energy Materials, 2015, 5(23), 1500799. 73 Al-Ashouri A, Magomedov A, Roß M, et al. Energy & Environmental Science, 2019, 12, 3356. 74 Lang F, Jost M, Frohna K, et al. Joule, 2020, 4(5), 1054. 75 Xiao Z, Jia X, Ding L M. Science Bulletin, 2017, 62(23), 1562. 76 Meng L X, Zhang Y M, Wan X J, et al. Science, 2018, 361(6407), 1094. 77 An Q S, Ma X L, Gao J H, et al. Science Bulletin, 2019, 64(8), 504. 78 Li Z, Wu S F, Zhang J, et al. Advanced Energy Materials, 2020, 10(18), 2000361. 79 Chen X, Jia Z Y, Chen Z, et al. Joule, 2020, 4(7), 1594. 80 Wang P Y, Zhang X W, Zhou Y Q, et al. Nature Communications, 2018, 9, 2225. 81 Wang S J, Chen D J, Xu K Y, et al. ACS Energy Letters, 2024, 9(6), 2517. 82 Fang Z M, Liu L, Zhang Z M, et al. Science Bulletin, 2019, 64(8), 507. 83 Jia X, Liu L, Fang Z M. Journal of Materials Chemistry C, 2019, 7, 7207. 84 Zeng Q, Liu L, Xiao Z, et al. Science Bulletin, 2019, 64(13), 885. 85 Xie S K, Xia R X, Chen Z, et al. Nano Energy, 2020, 78, 105238. 86 Liu Q S, Jiang Y F, Jin K, et al. Science Bulletin, 2020, 65(4), 272. 87 Yuan J, Zhang Y Q, Zhou L Y, et al. Joule, 2019, 3(4), 1140. 88 Meng X, Jia Z R, Niu X X, et al. Nanoscale, 2024, 16(17), 8307. 89 Jiang Q, Zhao Y, Zhang X W, et al. Nature Photonics, 2019, 13, 460. 90 Zuo C T, Ding L M. Advanced Energy Materials, 2016, 7(2), 1601193. 91 Ying Z Q, Yang X, Wang X Z, et al. Advanced Materials, 2024, 36(37), 2311501. 92 Chen X, Jia Z Y, Chen Z, et al. Joule, 2020, 4(7), 1594. 93 Song Z N, Chen C, Li C W, et al. Semiconductor Science and Technology, 2019, 34, 093001. 94 Domanski K, Correa-Baena J P, Mine N, et al. ACS Nano, 2016, 10(6), 6306. 95 Zhao L F, Kerner R A, Xiao Z G, et al. ACS Energy Letters, 2016, 1(3), 595. 96 Werner J, Niesen B, Ballif C. Advanced Materials Interfaces, 2018, 5(1), 1700731. |
|
|
|