METAMATERIALS FOR MANIPULATING LIGHT & HEAT:APPLICATIONS AND INNOVATIONS |
|
|
|
|
|
Smart Fibers and Fabrics for Wearable Thermal Management |
ZHANG Rongzhen, BAI Hao*
|
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract Maintaining thermal comfort is crucial for sustaining normal human physiological functions. Utilizing fibers and textiles for personal thermal regulation not only enhances thermal comfort but also contributes to reducing building energy consumption. However, traditional textiles often fail to meet diverse human thermal comfort needs, necessitating the development of novel wearable thermal management materials. Thanks to advancements in material chemistry, physics, and nanotechnology, numerous fibers and textiles with outstanding thermal management properties have been developed. This article reviews innovative strategies for temperature regulation and the latest advancements in wearable thermal management materials, focusing on various advanced passive and active thermal management materials. It aims to enhance understanding of the mechanisms behind these materials and provide a comprehensive reference for researchers in the field. It begins with an introduction to the phy-siological basis of human thermal regulation, followed by a detailed exploration of passive and active thermal management fibers and textiles, discussing their operational principles, advantages and disadvantages in various application scenarios. Finally, from a commercial perspective, the article discusses the future prospects and challenges of wearable thermal management fibers and textiles.
|
Published: 10 January 2025
Online: 2025-01-10
|
|
|
|
1 Peng Y C, Cui Y. Joule, 2020, 4, 724. 2 Axelrod Y K, Diringer M N. Critical Care Clinics, 2006, 22, 767. 3 Chan A P C, Yi W. Indoor and Built Environment, 2016, 25, 3. 4 Hoyt T, Arens E, Zhang H. Building and Environment, 2015, 88, 89. 5 Yang L, Yan H Y, Lam J C. Applied Energy, 2014, 115, 164. 6 Hong S, Gu Y, Seo J K, et al. Science Advances, 2019, 5, eaaw0536. 7 Fang Y S, Chen G R, Bick M, et al. Chemical Society Reviews, 2021, 50, 9357. 8 Zhao D L, Lu X, Fan T Z, et al. Applied Energy, 2018, 218, 282. 9 Sanders D, Grunden A, Dunn R R. Biology Letters, 2021, 17, 20200700. 10 Morgan P W. Journal of Macromolecular Science-Chemistry, 1981, A15, 1113. 11 Cui Y, Gong H X, Wang Y J, et al. Advanced Materials, 2018, 30, 1706807. 12 Liu Z W, Lyu J, Fang D, et al. ACS Nano, 2019, 13, 5703. 13 Wang J M. Integrated Ferroelectrics, 2018, 189, 36. 14 Lin Y Y, Liu X Y, Babar A A, et al. ACS Applied Materials & Interfaces, 2023, 15, 53105. 15 Miao D Y, Huang Z, Wang X F, et al. Small, 2018, 14, 1801527. 16 Liu P, Li Y M, Xu Y F, et al. Small, 2018, 14, 1702926. 17 Vriens J, Nilius B, Voets T. Nature Reviews Neuroscience, 2014, 15, 573. 18 Mundel T, Raman A, Schlader Z J. Temperature (Austin, Tex), 2016, 3, 298. 19 Fang Y S, Zhao X, Chen G R, et al. Joule, 2021, 5, 752. 20 Hu R, Liu Y D, Shin S, et al. Advanced Energy Materials, 2020, 10, 1903921. 21 Tong J K, Huang X P, Boriskina S V, et al. ACS Photonics, 2015, 2, 769. 22 Abbas A, Zhao Y, Wang X G, et al. Journal of the Textile Institute, 2013, 104, 798. 23 Montazer M, Asghari M S G, Pakdel E. Journal of Applied Polymer Science, 2011, 121, 3353. 24 Manasoglu G, Celen R, Kanik M, et al. Journal of Applied Polymer Science, 2019, 136, 48024. 25 Peng Y D, Dong J C, Long J Y, et al. Nano-Micro Letters, 2024, 16, 199. 26 Wang J M, Li Q X, Liu D, et al. Nanoscale, 2018, 10, 16868. 27 Farajikhah S, Van Amber R, Sayyar S, et al. Macromolecular Materials and Engineering, 2019, 304, 1800542. 28 Wang Z L, Zhong Y Q, Wang S Y. Textile Research Journal, 2012, 82, 454. 29 Hu P Y, Wu F S, Ma B J, et al. Advanced Materials, 2024, 36, 2310023. 30 Shao Z, Wang Y, Bai H. Chemical Engineering Journal, 2020, 397, 125441. 31 Wang Y J, Cui Y, Shao Z Y, et al. Chemical Engineering Journal, 2020, 390, 124623. 32 Wu M R, Shao Z Y, Zhao N F, et al. Science, 2023, 382, 1379. 33 Zhou Z G, Wang X, Ma Y G, et al. Cell Reports Physical Science, 2020, 1, 100231. 34 Hsu P C, Song A Y, Catrysse P B, et al. Science, 2016, 353, 1019. 35 Peng Y C, Chen J, Song A Y, et al. Nature Sustainability, 2018, 1, 105. 36 Wu X, Li J, Jiang Q, et al. Nature Sustainability, 2023, 6, 1446. 37 Zeng S N, Pian S J, Su M Y, et al. Science, 2021, 373, 692. 38 Larciprete M C, Gloy Y S, Voti R L, et al. International Journal of Thermal Sciences, 2017, 113, 130. 39 Roh J S, Chi Y S, Kang T J. Smart Materials and Structures, 2009, 18, 025018. 40 Cai L L, Song A Y, Wu P L, et al. Nature Communications, 2017, 8, 496. 41 Yang A K, Cai L L, Zhang R F, et al. Nano Letters, 2017, 17, 3506. 42 Hsu P-C, Liu C, Song A Y, et al. Science Advances, 2017, 3, e1700895. 43 Alehosseini E, Jafari S M. Advances in Colloid and Interface Science, 2020, 283, 102226. 44 Wang G, Tang Z D, Gao Y, et al. Chemical Reviews, 2023, 123, 6953. 45 Guo Z J, Lin F K, Qiao J X, et al. Nano Energy, 2023, 108, 108205. 46 Li G Y, Hong G, Dong D P, et al. Advanced Materials, 2018, 30, 1801754. 47 Zhang Y H, Li T S, Zhang S H, et al. Chemical Engineering Journal, 2022, 436, 135226. 48 Wu J J, Wang M X, Dong L, et al. ACS Nano, 2022, 16, 12801. 49 Jung Y, Kim M, Kim T, et al. Nano-Micro Letters, 2023, 15, 2311. 50 Di J T, Zhang X H, Yong Z Z, et al. Advanced Materials, 2016, 28, 10529. 51 Chen W, Miao H, Meng G Q, et al. Small, 2022, 18, 2107196. 52 Chang J, Shi L, Zhang M, et al. Advanced Materials, 2023, 35, 2209215. 53 Fan X Q, Ding Y, Liu Y, et al. ACS Nano, 2019, 13, 8124. 54 Lei Q, He D F, Ding L P, et al. Advanced Functional Materials, 2022, 32, 2113269. 55 Chen C, Wang R, Li X L, et al. Nano Letters, 2022, 22, 4131. 56 Jeong M H, Kim K C, Kim J S, et al. Advanced Science, 2022, 9, 2104915. 57 Liu P, Li Y, Xu Y, et al. Small, 2018, 14, 1702926. 58 Won P, Park J J, Lee T, et al. Nano Letters, 2019, 19, 6087. 59 Zhao X, Wang L Y, Tang C Y, et al. ACS Nano, 2020, 14, 8793. 60 Yun I, Lee Y, Park Y G, et al. Nano Energy, 2022, 93, 106857. 61 Kim D, Bang J, Lee W, et al. Journal of Materials Chemistry A, 2020, 8, 8281. 62 Kim H, Choi J, Kim K K, et al. Nature Communications, 2021, 12, 4658. 63 Kar-Narayan S, Mathur N D. Ferroelectrics, 2012, 433, 107. 64 Lee J, Kim D, Sul H, et al. Advanced Functional Materials, 2021, 31, 2007376. 65 Ma R J, Zhang Z Y, Tong K, et al. Science, 2017, 357, 1130. 66 Wang Z Y, Bo Y W, Bai P J, et al. Science, 2023, 382, 1291. 67 Lee J A, Aliev A E, Bykova J S, et al. Advanced Materials, 2016, 28, 5038. 68 Jung Y, Choi J, Yoon Y, et al. Nano Energy, 2022, 95, 107002. 69 Lee B, Cho H, Park K T, et al. Nature Communications, 2020, 11, 5948. 70 Wang Y, Yang L, Shi X L, et al. Advanced Materials, 2019, 31, 1807916. 71 Wei W, Wu B, Guo Y, et al. Applied Energy, 2023, 352, 121973. 72 Zeng S, Pian S, Su M, et al. Science, 2021, 373, 692. 73 Zeng K, Shi X, Tang C, et al. Nature Reviews Materials, 2023, 8, 552. 74 Chen M, Ouyang J, Jian A, et al. Nature Communications, 2022, 13, 7097. |
[1] |
HOU Mingyue, YAO Rihui, LUO Dongxiang, ZHENG Hua, LIU Xianzhe, LI Zhenchao, CAI Wei, NING Honglong, PENG Junbiao. Research Progress of Precursor Type Silver Ink for Wearable Electronics[J]. Materials Reports, 2025, 39(4): 23110204-11. |
|
|
|
|