POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Photocatalytic Depolymerization of Lignin and Its Model Compounds |
TANG Ruixin1,2, ZHU Ziqi1,2, WANG Ling1,2, YANG Pei1,2,*, ZHOU Xiaoyan1,2,*
|
1 Collaborative Innovation Center for Efficient Processing and Utilization of Forestry Resources of Nanjing Forestry University, Nanjing 210037, China 2 School of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China |
|
|
Abstract Since lignin is the only renewable biopolymer that has abundant aromatic ring structure in nature, the depolymerization of lignin can provide raw materials for high value-added platform compounds and fine chemicals to relieve the security of fossil energy and the derivative environmental concerns. However, it is difficult to depolymerize lignin into monomeric phenols based on retaining the free phenolic hydroxyl groups and alcohol hydroxyl groups due to the complexity, recalcitrance and low chemical reactivity of lignin itself. Recently, photocatalysis has become a sustainable and fascinated paradigm for the high-quality conversion of lignin because of its ability to accurately cleave the C-O and C-C bonds of lignin and its model compounds under mild conditions. Herein, both homogeneous and heterogeneous photocatalysts were introduced and discussed about how to increase their photocatalytic performances by elemental doping and defect design. This review also analyzed the reaction pathways and mechanisms involved in the process of lignin depolymerization. In addition, the suitability and rationality of different reaction devices were evaluated in a comparative manner, especially in the efficiency and selectivity of photocatalytic depolymerization. Finally, the existing problems and feasible solutions in terms of this strategy were proposed, which may provide the basis and reference for the high-valued green transformation of lignin biomass.
|
Published: 15 August 2025
Online: 2025-08-15
|
|
|
|
1 Ma Q Z, Zhang X J. Scientific Reports, 2022, 12(1), 19136. 2 Nie M C, Huo S P, Kong Z W. Chemistry and Industry of Forest Pro-ducts, 2020, 30(5), 115 (in Chinese). 聂明才, 霍淑平, 孔振武. 林产化学与工业, 2010, 30(5), 115. 3 Zhao X K, Li H L, She D, et al. Biomass Chemical Engineering, 2018, 52(1), 41 (in Chinese). 赵新坤, 李赫龙, 佘雕, 等. 生物质化学工程, 2018, 52(1), 41. 4 Renders T, Schutyser W, Van Den Bosch S, et al. ACS Catalysis, 2016, 6(3), 2055. 5 Li L X, Dong L, Li D D, et al. ACS Catalysis, 2020, 10(24), 15197. 6 Luo Z C, Wang Y M, He M Y, et al. Green Chemistry, 2016, 18(2), 433. 7 Chen H, Wan K, Zhang F J, et al. Renewable and Sustainable Energy Reviews, 2021, 147, 111217. 8 Wu X J, Luo N C, Xie S J, et al. Chemical Society Reviews, 2020, 49(17), 6198. 9 Nguyen J D, Matsuura B S, Stephenson C R J. Journal of the American Chemical Society, 2014, 136(4), 1218. 10 Kosuke Suzuki, Noritaka Mizuno, Kazuya Yamaguchi. ACS Catalysis, 2018, 8(11), 10809. 11 Zhang M, Zheng L, Feng Y Q, et al. Green Chemistry, 2023, 25, 10091 12 Wu X J, Fan X T, Xie S J, et al. Nature Catalysis, 2018, 1(10), 772. 13 Zhang D K, Cai H T, Su Y Z, et al. Chem Catalysis, 2022, 2(8), 1893. 14 Hao Z K, Li S Y, Sun J R, et al. Applied Catalysis B:Environmental, 2018, 237, 366 15 Kobayakawa K, Sato Y, Nakamura S, et al. Bulletin of the Chemical Society of Japan, 1989, 62(11), 3433. 16 Xiao X Y, Han Y, Liu C, et al. Materials Today Energy, 2022, 30, 101190. 17 Wu K J, Liang J R, Liu X J, et al. Journal of Energy Chemistry, 2023, 84, 89. 18 Dai J H, Patti A F, Styles G N, et al. Green Chemistry, 2019, 21(8), 2005. 19 Xu J, Li M, Yang L Y, et al. Chemical Engineering Journal, 2020, 394, 125050. 20 Hou T T, Luo N C, Li H J, et al. ACS Catalysis, 2017, 7(6), 3850. 21 Chen H, Hong D H, Wan Kun, et al. Chinese Chemical Letters, 2022, 33(9), 4357. 22 Mazarji M, Alvarado-Morales M, Tsapekos P, et al. Environment International, 2019, 125, 172. 23 Wu KJ, Cao M L, Zeng Q, et al. Green Energy & Environment, 2023, 8(2), 383. 24 Chen J, Liu W X, Song Z P, et al. BioEnergy Research, 2018, 11(1), 166. 25 Zhang S S, Ou X Y, Xiang Q, et al. Chemosphere, 2022, 303, 135085. 26 Zhang J F, Sun J D, Suo C C, et al. Sustainable Energy Fuels, DOI:10. 1039/D4SE00741G 27 Luo N C, Wang M, Li H J, et al. ACS Catalysis, 2017, 7(7), 4571. 28 Li G M, Wang B, Zhang J, et al. Applied Surface Science, 2019, 478, 1056. 29 Chen R L, Li L F, Gong Y F, et al. Journal of Materials Science & Technology, 2024, 202, 67. 30 Giannakoudakis D A, Zormpa F F, Margellou A G, et al. Nanomaterials, 2022, 12, 1679. 31 Arora Shalini, Gupta Neeraj, Singh Vasundhara. Green Chemistry, 2020, 22, 2018. 32 Nguyen C H, Tran M L, Tran T T V, et al. Separation and Purification Technology, 2020, 232, 115962. 33 Kang Z H. Journal of Molecular Science, 2021, 37(6), 483 (in Chinese). 康振辉. 分子科学学报, 2021, 37(6), 483 34 Sharma S, Kumar S, Arumugam S M, et al. Applied Catalysis A:General, 2020, 602, 117730. 35 Liu H F, Li H J, Lu J M, et al. ACS Catalysis, 2018, 8(6), 4761. 36 Zhao M D, Li Y L, Wang J S. Chinese Journal of Engineering, 2022, 44(4), 641 (in Chinese). 赵梦迪, 李永利, 王金淑. 工程科学学报, 2022, 44(4), 641. 37 Liang D, Wu J C, Xie C, et al. Applied Catalysis B:Environmental, 2022, 317, 121690. 38 Geng Z X, Wang Y Y, Yang Z X. New Chemical Materials, 2021, 49(12), 269 (in Chinese). 耿忠兴, 王一越, 杨占旭. 化工新型材料, 2021, 49(12), 269. 39 Zhao H, Li C F, Liu L Y, et al. Journal of Colloid and Interface Science, 2021, 585, 694. 40 Cui M Y, Liang C, Zhao W, et al. Fuel Processing Technology, 2022, 238, 107481. 41 Liao A Z, He H C, Zhou Y, et al. Journal of Semiconductors, 2020, 41(9), 091709. 42 Xu J, Li M, Qiu J, et al. International Journal of Biological Macromolecules, 2021, 180, 403. 43 Kumer A, Ghalta R, Bal R, et al. Applied Catalysis B:Environment and Energy, 2024, 124494. 44 Niu Y, Guo C, Cao X, et al. Journal of Colloid and Interface Science, 2024, 677, 342. 45 Zhang Q, Chu Y C, Liu Z, et al. Applied Catalysis B:Environment and Energy, 2023, 331, 122688. 46 Dai D, Qiu J, Xia G, et al. International Journal of Biological Macromolecules, 2023, 227, 1317. 47 Liao H, Zhou Y, Chen Z, et al. ACS Catalysis, 2024, 14(8), 5539. 48 Dai D, Qiu J, Xia G, et al. ACS Catalysis, 2023, 13(22), 14987. 49 Liu W, Jiang C, Feng J, et al. International Journal of Biological Macromolecules, 2024, 260, 129587. 50 Liu X, Jiang Z, Cao X, et al. Green Chemistry, 2024, 26, 1935. 51 Luo J, Zhang X, Lu J Z, et al. ACS Catalysis, 2017, 7(8), 5062. 52 Luo J, Zhang J. The Journal of Organic Chemistry, 2016, 81(19), 9131. 53 Kang Y, Lu X M, Zhang G J, et al. ChemSusChem, 2019, 12(17), 4005. 54 Wang X T, Chu S, Shao J J, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(35), 11555. 55 Wang Y L, He J H, Zhang Y T. CCS Chemistry, 2020, 2(3), 107. 56 Wang M, Lu J M, Zhang X C, et al. ACS Catalysis, 2016, 6(9), 6086. 57 Cao Y, Wang N, He X, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(11), 15032. 58 Luo N C, Wang M, Li H J, et al. ACS Catalysis, 2016, 6(11), 7716. 59 Kim S, Chmely S C, Nimlos M R, et al. The Journal of Physical Chemistry Letters, 2011, 2(22), 2846. 60 Shuai L, Sitison J, Sadula S, et al. ACS Catalysis, 2018, 8(7), 6507. 61 Gazi S, Hung Ng W K, Ganguly R, et al. Chemical Science, 2015, 6(12), 7130. 62 Liu H F, Li H J, Luo N C, et al. ACS Catalysis, 2020, 10(1), 632. 63 Wu X J, Lin J C, Zhang H Z, etal. Green Chemistry, 2021, 23(24), 10071. 64 Tucker J W, Zhang Y, Jamison T F, et al. Angewandte Chemie International Edition, 2012, 51(17), 4144. 65 Cambié D, Bottecchia C, Straathof N J W, et al. Chemical Reviews, 2016, 116(17), 10276. 66 Li S Y, Hao Z K, Wang KX, et al. Chemical Communications, 2020, 56(76), 11243. 67 Colmenares J C, Varma R S, Nair V. Chemical Society Reviews, 2017, 46(22), 6675. |
|
|
|