POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Advancements in the Utilization of Nanocellulose for Phase Change Energy Storage Applications |
WANG Huijie1, HU Jiangtao2, GAI Xiaoqian1, LIU Xinman1, LI Ren’ai1, XIAO Huining3, LIU Chao1,*
|
1 Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China 2 Anhui Huabang Gulou New Materials Co., Ltd., Huangshan 245200, Anhui, China 3 Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada |
|
|
Abstract Nanocellulose, as an innovative bio-based functional material, demonstrates significant potential in addressing the issue of liquid phase lea-kage in phase-change energy storage materials due to its exceptional mechanical properties, nanoscale characteristics, and environmentally friendly nature. This review first systematically elucidates the fundamental principles and diverse classification systems of phase-change energy storage materials. It subsequently focuses on the fabrication techniques of nanocellulosic materials and the advancements in phase-change energy storage materials research, encompassing nanocellulosic microencapsulated phase change energy storage materials as well as nanocellulosic aerogel-based phase change energy storage materials along with their mechanisms for enhancing thermal conductivity. It ends with a comprehensive overview of the focal points and future trends of nanocellulose within the realm of phase-change energy storage.
|
Published: 25 August 2025
Online: 2025-08-15
|
|
|
|
1 Armaroli N, Balzani V. Angewandte Chemie International Edition, 2007, 46(1-2), 52.
2 Sun Q, Zhang H, Xue J, et al. Chemical Engineering Journal, 2018, 353, 920.
3 Sawyer R F. Proceedings of the Combustion Institute, 2009, 32(1), 45.
4 Cabeza L F, De Gracia A, Zsembinszki G, et al. Energy, 2021, 231, 120943.
5 Shen Z H, Qin M L, Xiong F, et al. Energy & Environmental Science, 2023, 16(3), 830.
6 Ghaib K. ChemBioEng Reviews, 2017, 4(4), 215.
7 Fleuchaus P, Godschalk B, Stober I, et al. Renewable and Sustainable Energy Reviews, 2018, 94, 861.
8 Xu J, Wang R Z, Li Y. Solar Energy, 2014, 103, 610.
9 Pinel P, Cruickshank C A, Beausoleil-Morrison I, et al. Renewable and Sustainable Energy Reviews, 2011, 15(7), 3341.
10 Singh P, Sharma R K, Ansu A K, et al. Solar Energy Materials and Solar Cells, 2021, 223, 110955.
11 Zhou D, Zhao C Y, Tian Y. Applied Energy, 2012, 92, 593.
12 Umair M M, Zhang Y, Iqbal K, et al. Applied Energy, 2019, 235, 846.
13 Cheng X L, Mu R, Sun T, et al. Materials Reports, 2024, 38(5), 73 (in Chinese).
成鑫磊, 穆锐, 孙涛, 等. 材料导报, 2024, 38(5), 73.
14 Lei C, Wu K, Wu L, et al. Journal of Materials Chemistry A, 2019, 7(33), 19364.
15 Ismail K A R, Lino F A M, Machado P L O, et al. Journal of Energy Storage, 2022, 53, 105202.
16 Gupta B, Bhalavi J, Sharma S, et al. Materials Today Proceedings, 2021, 46, 5550.
17 Prajapati D G, Kandasubramanian B. Polymer Reviews, 2020, 60(3), 389.
18 Cai R, Sun Z, Yu H, et al. Journal of Building Engineering, 2021, 35, 101979.
19 Xiao L G, Li H. New Chemical Materials, 2024(4), 228 (in Chinese).
肖力光, 李赫. 化工新型材料, 2024(4), 228.
20 Wang Z F, Chen M J, Ma Y, et al. International Journal of Applied Ceramic Technology, 2017, 14(1), 3.
21 Fernández A I, Barreneche C, Belusko M, et al. Solar Energy Materials and Solar Cells, 2017, 171, 275.
22 Rao Z, Wang S, Wu M, et al. Energy Conversion and Management, 2012, 64, 152.
23 Zhang Y, Wang L, Tang B, et al. Applied Energy, 2016, 184, 241.
24 Hagelstein G, Gschwander S. International Journal of Refrigeration, 2017, 84, 67.
25 Jelle B P, Kalnæs S E. Cost-effective energy efficient building retrofitting, Woodhead Publishing, UK, 2017, pp. 57.
26 Nazir H, Batool M, Bolivar Osorio F J, et al. International Journal of Heat and Mass Transfer, 2019, 129, 491.
27 Wang W K, Dong Z, Lai Y H, et al. Refrigeration & Air Conditioning, 2020, 34(1), 91.
王文楷, 董震, 赖艳华, 等. 制冷与空调(四川), 2020, 34(1), 91.
28 Kong W, Fu X, Liu Z, et al. Applied Thermal Engineering, 2017, 117, 622.
29 Chandra D, Chellappa R, Chien W M. Journal of Physics and Chemistry of Solids, 2005, 66(2), 235.
30 Huang X, Chen X, Li A, et al. Chemical Engineering Journal, 2019, 356, 641.
31 Giro-Paloma J, Martínez M, Cabeza L F, et al. Renewable and Sustai-nable Energy Reviews, 2016, 53, 1059.
32 Purushotham P, Ho R, Zimmer J. Science, 2020, 369(6507), 1089.
33 Klemm D, Heublein B, Fink H P, et al. Angewandte Chemie International Edition, 2005, 44(22), 3358.
34 Tavakolian M, Jafari S M, Van De Ven T G M. Nano-Micro Letters, 2020, 12(1), 73.
35 Dufresne A. Materials Today, 2013, 16(6), 220.
36 Trache D, Tarchoun A F, Derradji M, et al. Frontiers in Chemistry, 2020, 8, 392.
37 Du H, Liu W, Zhang M, et al. Carbohydrate Polymers, 2019, 209, 130.
38 Liu Z Z, Bai Y, Sun W L, et al. New Chemical Materials, 2022, 50(7), 1 (in Chinese).
刘中正, 白雨, 孙文丽, 等. 化工新型材料, 2022, 50(7), 1.
39 Hoeng F, Denneulin A, Bras J. Nanoscale, 2016, 8(27), 13131.
40 Do T V V, Tran N B A, Nguyen-Thai N U. Polymer Composites, 2023, 44(4), 2287.
41 Gómez H C, Serpa A, Velásquez-Cock J, et al. Food Hydrocolloids, 2016, 57, 178.
42 Li F, Mascheroni E, Piergiovanni L. Packaging Technology and Science, 2015, 28(6), 475.
43 Li C L, Shen C Y, Yang Y, et al. Materials Reports, 2025, 39(7), 249 (in Chinese).
李翠利, 申纯宇, 杨英, 等. 材料导报, 2025, 39(7), 249.
44 Blanco A, Monte M C, Campano C, et al. Handbook of nanomaterials for industrial applications, Elsevier, US, 2018, pp. 74.
45 Chu Y, Sun Y, Wu W, et al. Carbohydrate Polymers, 2020, 250, 116892.
46 Thomas B, Raj M C, B A K, et al. Chemical Reviews, 2018, 118(24), 11575.
47 Xie H, Du H, Yang X, et al. International Journal of Polymer Science, 2018, 2018(1), 7923068.
48 Zhang J, Xu C, Zhang Y, et al. Journal of South China University of Technology (Natural Seience Edition), 2019, 47(9), 121 (in Chinese).
张俊, 许超, 张宇, 等. 华南理工大学学报(自然科学版), 2019, 47(9), 121.
49 Liu C, Li B, Du H, et al. Carbohydrate Polymers, 2016, 151, 716.
50 Yan X, Tao Y, Qian X. Polymers, 2020, 12(10), 2366.
51 Sivanathan A, Dou Q, Wang Y, et al. Nanotechnology Reviews, 2020, 9(1), 896.
52 Li Z, Zhou M, Wu F, et al. International Journal of Pharmaceutics, 2019, 564, 10.
53 Ishak S, Mandal S, Lee H S, et al. Scientific Reports, 2020, 10(1), 15023.
54 Lei K, Wang S, Wang Z, et al. Composites Part A-Applied Science and Manufacturing, 2023, 168, 107480.
55 Li C, He G, Yan H, et al. Energy Procedia, 2018, 152, 390.
56 Lashgari S, Arabi H, Mahdavian A R, et al. Applied Energy, 2017, 190, 612.
57 Dorieh A, Farajollah P M, Ghafari M S, et al. Progress in Organic Coatings, 2022, 165, 106768.
58 Wang X G, Lei W Y, Zhu J L, et al. Materials Reports, 2023, 37(20), 198 (in Chinese).
王信刚, 雷为愉, 朱街禄, 等. 材料导报, 2023, 37(20), 198.
59 Cárdenas-Ramírez C, Jaramillo F, Gómez M. Journal of Energy Storage, 2020, 30, 101495.
60 Wang X, Yin H, Chen Z, et al. Materials Today Communications, 2020, 22, 100854.
61 Zuo J, Zhan J, Luo C, et al. Advanced Powder Technology, 2017, 28(11), 2805.
62 Xing J, Zhou Y, Yang K, et al. Journal of Energy Storage, 2021, 34, 101998.
63 Trivedi G V N, Parameshwaran R. Materials Chemistry and Physics, 2020, 242, 122519.
64 Cho J S, Kwon A, Cho C G. Colloid and Polymer Science, 2002, 280(3), 260.
65 Lee J, Park S J, Park C S, et al. Polymers (Basel), 2018, 10(6), 675.
66 Wang K, Yan T, Meng L, et al. Solar RRL, 2023, 7(22), 2300447.
67 Şahan N, Paksoy H. International Journal of Energy Research, 2020, 44(5), 3922.
68 Li M, Liu J, Shi J. Solar Energy, 2018, 167, 158.
69 Zhang Y, Tao W, Wang K, et al. Renewable Energy, 2020, 149, 400.
70 Tian Y, Liu Y, Zhang L, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2020, 586, 124216.
71 Arshad A, Jabbal M, Yan Y, et al. International Journal of Energy Research, 2019, 43(11), 5572.
72 Bakeshlou Z, Nikfarjam N. Industrial & Engineering Chemistry Research, 2020, 59(46), 20253.
73 Salas C, Nypelö T, Rodriguez-Abreu C, et al. Current Opinion in Colloid & Interface Science, 2014, 19(5), 383.
74 Dai H, Wu J, Zhang H, et al. Trends in Food Science & Technology, 2020, 102, 16.
75 Zhang Z, Zhang Z, Chang T, et al. Chemical Engineering Journal, 2022, 428, 131164.
76 Samanta A, Nechyporchuk O, Bordes R. Carbohydrate Polymers, 2023, 312, 120734.
77 Zhang B, Zhang Z, Kapar S, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(21), 17756.
78 Liu W, Lin Q, Chen S, et al. Advanced Composites and Hybrid Materials, 2023, 6(4), 149.
79 Zheng Y, Zhu Y, Yu Z, et al. Composites Part B-Engineering, 2022, 247, 110332.
80 Brinchi L, Cotana F, Fortunati E, et al. Carbohydrate Polymers, 2013, 94(1), 154.
81 Wang X, Yu K, An R, et al. Carbohydrate Polymers, 2019, 207, 694.
82 Shi X, Yazdani M R, Ajdary R, et al. Carbohydrate Polymers, 2021, 254, 117279.
83 Mekonnen B T, Ding W, Liu H, et al. Journal of Leather Science and Engineering, 2021, 3(1), 25.
84 Li L, Lu F, Wang C, et al. Journal of Materials Chemistry A, 2018, 6(47), 24468.
85 Usov I, Nyström G, Adamcik J, et al. Nature Communications, 2015, 6, 7564.
86 Ahankari S, Paliwal P, Subhedar A, et al. ACS Nano, 2021, 15(3), 3849.
87 Song M, Jiang J, Zhu J, et al. Carbohydrate Polymers, 2021, 272, 118460.
88 Luo Y, Xie Y, Jiang H, et al. Chemical Engineering Journal, 2021, 420, 130466.
89 Wang X, Zhang Y, Jiang H, et al. Materials Letters, 2016, 183, 17.
90 El-Naggar M E, Othman S I, Allam A A, et al. International Journal of Biological Macromolecules, 2020, 145, 1115.
91 Xiao H, Lv J B, Tan W, et al. Chemical Engineering Journal, 2022, 450, 138344.
92 Liu C, Huang C, Li Y, et al. International Journal of Biological Macromolecules, 2023, 252, 126370.
93 Liu P, Gao H, Chen X, et al. Composites Part B-Engineering, 2020, 195, 108072.
94 Wang H, Deng Y, Liu Y, et al. Composites Part A-Applied Science and Manufacturing, 2022, 155, 106853.
95 Wang H, Deng Y, Wu F, et al. Solar Energy Materials and Solar Cells, 2021, 230, 111236.
96 Feng D, Feng Y, Qiu L, et al. Renewable and Sustainable Energy Reviews, 2019, 109, 578.
97 Li A, Wang J, Dong C, et al. Applied Energy, 2018, 217, 369.
98 Huang X, Liu Z, Xia W, et al. Journal of Materials Chemistry A, 2015, 3(5), 1935.
99 Shao G, Hanaor D A H, Shen X, et al. Advanced Materials, 2020, 32(17), 1907176.
100 Lee G S, Yun T, Kim H, et al. ACS Nano, 2020, 14(9), 11722.
101 Du X, Wang J, Jin L, et al. ACS Applied Materials & Interfaces, 2022, 14(13), 15225.
102 Xin W, Ma M G, Chen F. ACS Applied Nano Materials, 2021, 4(7), 7234.
103 Huang X, Alva G, Liu L, et al. Applied Energy, 2017, 200, 19.
104 Papageorgiou D G, Kinloch I A, Young R J. Progress in Materials Science, 2017, 90, 75.
105 Balandin A A. Nature Materials, 2011, 10(8), 569.
106 Wu G Z. Preparation and photothermal utilization of functionalized cellulose-based composite phase change materials. Master’s Thesis, Shanghai Polytechnic University, China, 2022 (in Chinese).
吴官正. 功能化纤维素基相变储能复合材料的制备及光热利用. 硕士学位论文, 上海第二工业大学, 2022.
107 Du X, Qiu J, Deng S, et al. ACS Applied Materials & Interfaces, 2020, 12(5), 5695.
108 Tong X, Li N, Zeng M, et al. Renewable and Sustainable Energy Reviews, 2019, 108, 398.
109 Du X, Zhou M, Deng S, et al. Cellulose, 2020, 27(8), 4679.
110 Xue F, Jin X Z, Wang W Y, et al. Nanoscale, 2020, 12(6), 4005.
111 Shen H, Guo J, Wang H, et al. ACS Applied Materials & Interfaces, 2015, 7(10), 5701.
112 Roy S, Zhang X, Puthirath A B, et al. Advanced Materials, 2021, 33(44), 2101589.
113 Yan Q, Dai W, Gao J, et al. ACS Nano, 2021, 15(4), 6489.
114 Wan L, Liu C, Cao D, et al. ACS Applied Polymer Materials, 2020, 2(7), 3001. |
|
|
|