INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
The Effects of Different Hydrothermal Preparation Conditions on the Properties of ZnO Nano-materials |
XIA Ziwen1, LIANG Ping1, FENG Yang1, YANG Weiye1,2, PENG Hongyan1,2, ZHAO Shihua1,2,3,*
|
1 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China 2 The Innovation Platform for Academicians of Hainan Province, Haikou 571158, China 3 School of Electronic and Electrical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China |
|
|
Abstract ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties, making it widely applicable and promising for use in light-emitting devices, solar cells, lasers, and photodetectors. The methods for preparing ZnO are diverse, and among them, the hydrothermal method is favored for its simplicity, ease of operation, and low cost, making it an optimal choice for ZnO single-crystal growth. Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters, with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials. The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article. The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided, which including reaction materials, Zn2+/OH- ratio, reaction time and temperature, additives, experimental equipment, and annealing conditions. The review co-vers how different experimental parameters affect the morphology and performance of the materials, as well as how different rare earth doping elements influence the performance of ZnO nano-materials. It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.
|
Published: 25 August 2025
Online: 2025-08-15
|
|
Corresponding Authors:
Shihua Zhao,Ph.D.,is a professor and master’s supervisor at the College of Physics and Electronic Engineering,Hainan Normal University.His primary research focuses on the preparation of nano-material arrays and the study of their luminescent properties,specifically the large-scale,high-density controlled growth of one-dimensional nano-wire arrays.
|
|
|
1 Li H M, Meng J B, Yu H Y, et al. Materials Reports, 2024, 38(3), 22110123 (in Chinese). 2 Dong Z, Du Z Q, Wu X Y, et al. International Journal of Biological Macromolecules, 2022, 209(A), 525. 3 Wu H Y, Xie Q S, Li A, et al. Materials Letters, 2015, 139(15), 393. 4 Zou R, He G, Xu K, et al. Journal of Materials Chemistry A, 2013, 1(29), 8445. 5 Zhao S H, Wang L L, Yang L, et al. Physica B:Condensed Matter, 2010, 405(15), 3200. 6 Zhang N, Zhuo N Z, Cheng S W, et al. Spectroscopy and Spectral Analysis, 2018, 38(10), 3030 (in Chinese). 7 Zhao S H, Jia T J, Cui Y T, et al. Materials Reports, 2011, 25(10), 102 (in Chinese). 8 Zhao S H, Ma H F, Jia T J, et al. Materials Reports, 2011, 25(5), 139 (in Chinese). 9 Gultepe O, Atay F, Dikmen Z. Applied Physics A, 2023, 129(8), 586. 10 Hu H M, Huang X H, Deng C H, et al. Materials Chemistry and Physics, 2007, 106(1), 58. 11 Li W F, Sun Y G, Xu J L. Nano-Micro Letters, 2012, 4(2), 98. 12 Zhao S H. New Chemical Materials, 2013, 41(11), 23 (in Chinese). 13 Zheng X F. Chemical Industry Times, 2010, 24(6), 50 (in Chinese). 14 Huang F, Zheng W, Wang M Y, et al. Journal of Synthetic Crystals, 2021, 50(02), 209 (in Chinese). 15 Ohshima E, Ogino H, Niikura I, et al. Journal of Crystal Growth, 2004, 260(1-2), 166. 16 Chu D W, Zeng Y P, Jiang D L. Journal of Inorganic Materials, 2006, 21(3), 571 (in Chinese). 17 Stambolova I, Blaskov V, Stoyanova D, et al. Bulletin of Materials Science, 2017, 40(3), 483. 18 Vergés M A, Mifsud A, Serna C J. J Chem Soc, Faraday Trans, 2004, 86(6), 959. 19 Gerbreders V, Krasovska M, Sledevskis E, et al. CrystEngComm, 2020, 22(8), 1346. 20 Guo W W, Liu T M, Huang L, et al. Physica E:Low-dimensional Systems and Nanostructures, 2011, 44(3), 680. 21 Wang L Y, Xu X, Luo G H, et al. Chemical Reaction Engineering and Technology, 2020, 36(6), 498 (in Chinese). 22 Guo C F. China Powder Science and Technology, 2014, 20(2), 64 (in Chinese). 23 Hao R, Deng X, Yang Y B, et al. Acta Chimica Sinica, 2014, 72(12), 1199 (in Chinese). 24 Vayssieres L. Advanced Materials, 2003, 15(5), 464. 25 Yang J F, Zhang Z Y, You T G, et al. Chinese Physics B, 2009, 18(9), 4019. 26 Wang B G, Shi E W, Zhong W Z, et al. Chinese Science Bulletin, 1997, 42(12), 1041 (in Chinese). 27 Yuan B X, Xia Y C, Li M, et al. International Journal of Materials Research, 2018, 109 (10), 910. 28 Shin C M, Heo J H, Park J H, et al. Physica E:Low-dimensional Systems and Nanostructures, 2010, 43(1), 54. 29 Zhao L C, Xie Y, Zhang Z, et al. Materials Reports, 2019, 33(2), 577 (in Chinese). 30 Qin Z, Liao Q, Huang Y, et al. Materials Chemistry and Physics, 2010, 123(2-3), 811. 31 Wei A, Sun X W, Xu C X, et al. Nanotechnology, 2006, 17(6), 1740. 32 Su Z W, Fang Y, Li Z, et al. China Ceramics, 2013, 49(6), 13 (in Chinese). 33 Holi A M, Zainal Z, Talib Z A, et al. Optik, 2016, 127(23), 11111. 34 Li C, Zhou M, Shen J. Journal of Functional Materials, 2011, 42(7), 1327. 35 Bin L, Hua C Z. Journal of the American Chemical Society, 2003, 125 (15), 4430. 36 Greene L E, Yuhas B D, Law M, et al. Inorganic Chemistry, 2006, 45(19), 7535. 37 Fan X Y, Wang Y X, Yu X. Bulletin of the Chinese Ceramic Society, 2009, 28 (2), 374 (in Chinese). 38 Du J M, Liu Z M, Huang Y, et al. Journal of Crystal Growth, 2005, 280(1-2), 126. 39 Dong Q H, Li Z J. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2014, 35(3), 246 (in Chinese). 40 Sun C, Wu X W, Meng H, et al. Journal of Physics and Chemistry of Solids. 2014, 75(6), 726. 41 Zhang J J. Hydrothermal synthesis of nanometer ZnO and their gas sensing properties. Master's thesis, Harbin University of Science and Technology, China, 2015 (in Chinese). 42 Wang D, Seo H W, Tin C C, et al. Journal of Applied Physics, 2006, 99 (11), 113509. 43 Yang Q, Luo S Y, Chen J R. Semiconductor Optoelectronics, 2018, 39(1), 77 (in Chinese). 44 Yang J, Quan Z W, Kong D Y, et al. Crystal Growth & Design, 2007, 7(4), 730. 45 Zhang J J, Guo E J, Wang L P, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(3), 736. 46 Zhao X Q, Kim C R, Lee J Y, et al. Applied Surface Science, 2009, 255(11), 5861. 47 Ziani A, Davesnne C, Labbé C, et al. Thin Solid Films, 2014, 553, 52. 48 Ková J, Hronec P, Búc D, et al. Applied Surface Science, 2015, 337, 254. 49 de Souza G, Nery L H, Malafatti J O D, et al. MRS Communications, 2022, 12(4), 409. 50 Xia D L, Yan X Z, Qin K, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(04), 1132 (in Chinese). 51 Zhu Y X, Li J W, Li Q X, et al. Journal Of Beijing University Of Technology, 2023, 49(2), 188 (in Chinese). 52 Yan Y L, Zhang L W, Wang J L. Journal of Donghua University(English Edition), 2022, 39(2), 134. 53 Ma M G, Zhu Y J, Cheng G F, et al. Materials Letters, 2008, 62(3), 507. 54 Zhu Z F, Yang D, Liu H. Advanced Powder Technology, 2011, 22(4), 493. 55 Hasanpoor M, Aliofkhazraei M, Delavari H. Procedia Materials Science, 2015, 11, 320. 56 Wang X Y, Zhang F C, Zhang X, et al. Ordnance Material Science and Engineering, 2018, 41(4), 63 (in Chinese). 57 Gao X Q, Tian J F, Gui Y H, et al. New Chemical Materials, 2014, 42(3), 102 (in Chinese). 58 Wang Y X, Cui X W, Zang G D, et al. Journal of Functional Materials, 2018, 49(01), 01001 (in Chinese). 59 Li Q W, Bian J M, Wang J W, et al. Chinese Journal of Luminescence, 2010, 31(2), 253 (in Chinese). 60 Zhang T Y, Xin M, Lin Z Y, et al. Chinese Rare Earths, 2020, 41(1), 65 (in Chinese). 61 Zhu L, Luo L C, Wang X. Chinese Journal of Environmental Engineering, 2015, 9(4), 1698 (in Chinese). 62 Wei Z R, Wang W W, Cai S Z, et al. Journal of Synthetic Crystals, 2007, 36(1), 81 (in Chinese). 63 Li H M, Meng J B, Yu H Y, et al. Materials Reports, 2024, 38(13), 22110123 (in Chinese). 64 Ekambaram S, Iikubo Y, Kudo A. Journal of Alloys and Compounds, 2007, 433(1-2), 237. 65 Dagar M, Kumar S, Jain A, et al. Journal of the Australian Ceramic Society, 2022, 58(5), 1571. |
|
|
|