METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Effect of DC Electric Field on the Corrosion Behavior of X80 Steel in Sulfate-reducing Bacteria System |
ZHANG Yani1,*, DUAN Bowen1, SONG Wei1, ZHANG Chengxin1, FAN Bing2, WANG Simin3
|
1 School of Materials Science and Engineering, University of Xi'an Shiyou, Xi'an 710065, China 2 China National Petroleum Engineering Materials Research Institute Co., Ltd., Xi'an 710077, China 3 Shougang Group Changzhi Iron and Steel Co., Ltd., Changzhi 046031, Shanxi, China |
|
|
Abstract As high-voltage transmission lines, rail transit, and oil and gas pipelines share public transportation corridor, the produced electric field envi-ronment has an inevitable influence on the corrosion behavior of sulfate-reducing bacteria (SRB). In this work, the effect of DC electric field on the corrosion behavior of X80 pipeline steel in the sulfate-reducing bacteria environment was investigated. The SRB quantity, the concentration and valence state of sulfide ions, the characteristics of surface biofilm, corrosion rate and electrochemical process, were analyzed by biological culture technology, immersion experiment, electrochemistry and other experimental methods, combined with Na2S2O3 titration technology, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser confocal and other analytical methods. The findings show that low voltage applied DC field promotes the growth of SRB, prolongs the life cycle of SRB, facilitates the formation of dense film layer on the surface of the matrix, and further hinders the attack of corrosive ions. While the high voltage applied DC field inhibits the growth of SRB, shortens the life cycle of SRB, and results in the film layer loose and porous. Meanwhile, the applied DC electric field changed the valency state of S element in film, high voltage applied DC field inhibits the S transformation from oxidation state (S6+) to reduction state (S2-). The dense film with the hig-hest S2- content and the lowest substrate corrosion rate can be obtained by applying a voltage of 500 V/m in the tested DC electric field voltage range within 0 —1 200 V/m. When the applied DC field voltage is 1 200 V/m, the content of S2- is the lowest in the dense film. The directional migration of corrosive ions and electrons is accelerated strongly by higher field strength, and the X80 steel has the highest uniform corrosion rate and pitting corrosion rate.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Arruda C K C, Dart F C, Lu G D, et al. Electric Power Systems Research, 2020, 180 , 106122. 2 Xu D, Gu T, Lovley D R. Nature Reviews, 2023, 21(11), 705. 3 Welikala S, Saadi S A, Gates W P, et al. Frontiers in Materials, 2024, 11, 203. 4 Huang H, Guo X, Zhang G, et al. Corrosion Science, 2011, 53(10), 3446. 5 Li S B. Study on the corrosion behavior of X70 steel under the synergistic effect of direct current and SRB. Master's Thesis, Liaoning Shihua University, China, 2019 (in Chinese). 李帅兵. 直流电和SRB协同作用下X70钢腐蚀行为研究. 硕士学位论文, 辽宁石油化工大学, 2019. 6 Ding Q M, Qin Y X, Gao Y N, et al. Thermal Working Technology, 2023, 52(2), 32 (in Chinese). 丁清苗, 秦永祥, 高宇宁, 等. 热加工工艺, 2023, 52(2), 32. 7 Wang H Y, Wu M, Xie F, et al. Material Protection, 2016, 49(7), 9 (in Chinese). 王海燕, 吴明, 谢飞, 等. 材料保护, 2016, 49(7), 9. 8 Huang H L, Pan Z Q, Guo X P, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(1), 285. 9 Zhang H, Gao B W, Yan M C, et al. Surface Technology, 2022, 51(8), 330 (in Chinese). 张辉, 高博文, 闫茂成, 等. 表面技术, 2022, 51(8), 330. 10 Liu T, Cheng Y F. Journal of Alloys and Compounds, 2017, 729, 180. 11 Li T T. Study on the corrosion behavior of X80 steel by the interaction of alternating current and microorganisms. Master's Thesis, China University of Petroleum (Beijing), China, 2021 (in Chinese). 李婷婷. 交流电与微生物共同作用对X80钢的腐蚀行为研究. 硕士学位论文, 中国石油大学(北京), 2021. 12 Song D, Zou J, Sun L, et al. Vacuum, 2024, 22(41), 183. 13 Hulsheger H, Potel J, Niemann E G. Radiation and Environmental Biophysics, 1983, 22(2), 149. 14 Yuan S, Liang B, Zhao Y, et al. Corrosion Science, 2013, 74, 353. 15 Florence B J, Maelle M, Ahmad F, et al. Biofouling, 2016, 32(5), 547. 16 Lee W, Lewandowski Z, Nielsen P H, et al. Biofouling, 1995, 8(3), 165. 17 Yan L Y, Tie X C, Guangdong Z. Geomicrobiology Journal, 2023, 40(3), 247. 18 Liu H, Gu T, Asif M, et al. Corrosion Science, 2017, 114, 102. 19 Chen Y, Dai S J, Li H X, et al. Metal Mine, 2024(2), 163 (in Chinese). 陈瑜, 代淑娟, 李洪祥, 等. 金属矿山, 2024(2), 163. 20 Hang F F, Yang H J, Guo Z G, et al. Applied Chemicals, 2024, 53(2), 273 (in Chinese). 黄霏霏, 杨后娟, 郭振国, 等. 应用化工, 2024, 53(2), 273. 21 Li Y F. Research on the recovery of gold from waste circuit boards by ammonia (amine)-thiosulfate method. Master's Thesis, Kunming University of Science and Technology, China, 2023 (in Chinese). 李玉芳. 氨(胺)-硫代硫酸盐法回收废旧电路板中金的研究. 硕士学位论文, 昆明理工大学, 2023. 22 Yu W X M, Feng W S, Mu X L, et al. Journal of Fuel Chemistry and Technology, 2024, 52(11), 1652 (in Chinese). 宇文晓萌, 冯文爽, 穆晓亮, 等. 燃料化学学报, 2024, 52(11), 1652. 23 Xu R H. Preparation of modified TiO2 nanotubes and their CO2 properties for photocatalytic reduction. Master's Thesis, Northeast Petroleum University, China, 2023 (in Chinese) 徐含冰. 改性TiO2纳米管制备及其光催化还原CO2性能研究. 硕士学位论文, 东北石油大学, 2023. 24 Jia F H, Guo C Y, Zou X Y, et al. Journal of Materials Heat Treatment, 2023, 44(10), 78 (in Chinese). 贾飞宏, 郭宇晨, 邹祥宇, 等. 材料热处理学报, 2023, 44(10), 78. 25 Song X R, Zhao Y, Wang Y X, et al. Journal of China Coal Society, DOI:10. 13225/j. cnki. jccs. 2024. 0114(in Chinese). 宋昕芮, 赵玉, 王玉晓, 等. 煤炭学报, DOI:10. 13225/j. cnki. jccs. 2024. 0114. 26 Ma Y Q, Wang Z H, Yang M Y, et al. Metal mines, 2023(8), 80 (in Chinese). 马英强, 汪子涵, 杨绵延, 等. 金属矿山, 2023(8), 80. 27 Xu Z R, Guo C L, Ke C D, et al. Journal of Environmental Science, 2024, 44(9), 227(in Chinese). 徐子冉, 郭楚玲, 柯常栋, 等. 环境科学学报, 2024, 44(9), 227. 28 Chen S T, Wang H, Cui W Q, et al. Molecular Catalysis, 2024, 38(1), 17 (in Chinese). 陈顺通, 王欢, 崔文权. 分子催化, 2024, 38(1), 17. 29 Li Y L, Qiu X W, Jiang Y M, et al. Chinese Journal of Eco-Agriculture, 2024, 32(4), 559(in Chinese). 黎衍亮, 邱秀文, 江玉梅, 等. 中国生态农业学报, 2024, 32(4), 559. 30 Zhang X Y, Dong F Q, Zheng F, et al. Journal of Petromineralogy, 2024, 43(4), 994(in Chinese). 张星宇, 董发勤, 郑飞, 等. 岩石矿物学杂志, 2024, 43(4), 994. 31 Li Y, Xue Y, Chowdhury R T, et al. mSphere, 2024, 2, 5924. |
|
|
|