INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Microstructure and Sodium Storage Performance of Biopolymers-derived Hard Carbon |
LIU Dongxu1, SONG Haowei1, LIU Peng1, YAO Qingrong1, WANG Zhongmin2, DENG Jianqiu1,*
|
1 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China 2 Institute of High-performance Materials, Guangxi Academy of Sciences, Nanning 530012, China |
|
|
Abstract The biomass-derived hard carbon materials exhibit high reversible capacity, abundant resource, and low cost, making them promising anode candidates for commercial sodium-ion batteries (SIBs). In this work, three kinds of natural biopolymers (cellulose, hemicellulose, and lignin) have been utilized as raw materials to prepare hard carbon anode materials through a one-step carbonization method. X-ray diffraction (XRD) results indicated that the carbonized products of the three kinds of natural biopolymers formed amorphous hard carbon materials with highly disordered structures. Among them, the cellulose-derived hard carbon exhibited a rod-like microstructure with a specific surface area of 3.04 m2·g-1 and an average pore diameter of 6.84 nm, which benefited its sodium ion storage. Consequently, the SIB anode made of the cellulose-derived hard carbon material demonstrated a charge capacity of 288.8 mAh·g-1 at a current density of 50 mA·g-1, with an initial Coulombic efficiency of 90.1%, and more particularly, maintained a charge capacity of 213.0 mAh·g-1 after 500 charge-discharge cycles at 500 mA·g-1, corresponding to a capacity retention of 86.6%. The present work may provide a technical inspiration for the development of high-performance biomass-derived hard carbon anodes for SIBs.
|
Published: 15 August 2025
Online: 2025-08-15
|
|
|
|
1 Kuai J, Xie J, Wang J, et al. Chemical Physics Letters, 2024, 842, 141214. 2 Deng J, Luo W B, Chou S L, et al. Advanced Energy Materials, 2018, 8(4), 1701428. 3 Wang H, Yu W, Shi J, et al. Electrochimica Acta, 2016, 188, 103. 4 Wang P, Wang H, Liang C, et al. Diamond and Related Materials, 2023, 131, 109601. 5 Wang Y, Xiao R, Hu Y S, et al. Nature Communications, 2015, 6(1), 6954. 6 Li D, Tang W, Yong C Y, et al. ChemSusChem, 2020, 13(8), 1991. 7 Xiao Y, Xiao J, Zhao H, et al. Small, 2024, 20(35), 2401957. 8 Zhou M, Zhu L, Cao Y, et al. RSC Advances, 2012, 2(13), 5495. 9 Wang J, Li Y S, Liu P, et al. Journal of Central South University, 2021, 28(2), 361. 10 Chen X, Zhang Y. International Journal of Energy Research, 2021, 45(7), 9753. 11 Perveen T, Siddiq M, Shahzad N, et al. Renewable & Sustainable Energy Reviews, 2020, 119, 109549. 12 Li L Y, Huang F B, Deng J, et al. Rare Metals, 2022, 41(5), 1512. 13 Hwang J Y, Myung S T, Sun Y K. Chemical Society Reviews, 2017, 46(12), 3529. 14 Zhong B, Liu C, Xiong D, et al. ACS Nano, 2024, 18(26), 16468. 15 Leng Y, Dong S, Chen Z, et al. Journal of Power Sources, 2024, 613, 239826. 16 Feng B, Xu L Q, Yu Z Y, et al. Electrochemistry Communications, 2023, 148, 107439. 17 Wang J, Yan L, Ren Q, et al. Electrochimica Acta, 2018, 291, 188. 18 Dey S C, Worfolk B, Lower L, et al. ACS Energy Letters, 2024, 9(6), 2590. 19 Shao W, Cao Q, Liu S, et al. Susmat, 2022, 2(3), 319. 20 Li Y, Mu L, Hu Y S, et al. Energy Storage Materials , 2016, 2, 139. 21 Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2000, 147(4), 1271. 22 Kim M, Fernando J F S, Li Z, et al. Chemical Engineering Journal, 2022, 445, 136344. 23 Tang Y, He J W, Peng J, et al. Energy & Fuels, 2024, 38(8), 7389. 24 Zhu Y E, Gu H, Chen Y N, et al. Ionics, 2018, 24(4), 1075. 25 He X M, Zhang C W, Guo F F, et al. Materials Research Bulletin, 2019, 118, 110495. 26 Sangani M F, Abrishamkesh S, Owens G. Bioresource Technology, 2020, 306, 123157. 27 Ying H, Zhang S, Meng Z, et al. Journal of Materials Chemistry A, 2017, 5(18), 8334. 28 Alvin S, Chandra C, Kim J, Chemical Engineering Journal, 2020, 391, 123576. 29 Xiao L, Lu H, Fang Y, et al. Advanced Energy Materials, 2018, 8(20), 1703238. 30 Liu Y, Fan L Z, Jiao L. Journal of Materials Chemistry A, 2017, 5(4), 1698. |
|
|
|