| POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
| Experimental Study on Ignition Characteristics of Aircraft Interior Panel Materials in Fire Environment |
| TIAN Wei1, JIA Xuhong1,2,3,*, DING Sijie1, ZHU Yulong1,2,3, ZHU Xinhua1,2,3, ZHANG Yuqiang1,2,3
|
1 College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, Sichuan, China 2 Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan 618307, Sichuan, China 3 Technology Engineering Research Center for All-electric Navigable Aircraft, Guanghan 618307, Sichuan, China |
|
|
|
|
Abstract The interior wall panel materials currently used in civil aircraft are categorized into two types: glass fiber/phenolic resin laminated boards and sandwich panels. These materials serve to insulate and delay the spread of flames in case of a fire. The civil aviation management department places greater emphasis on the burn-through resistance of wall panels. However, the high-temperature surface of these panels under the influence of a fire source possesses a certain ignition capability prior to burn-through, posing a significant fire hazard. This work investigates the thermal insulation performance and backside temperature rise of these two types of wall panels. Additionally, it explores the ignition times and heat flux of common combustibles (pine wood, cotton, and corrugated cardboard) in aviation transportation environments under fire conditions. A model was established to simulate the distribution of external heat flux for these panels, aiming to determine their ignition boundary conditions. The findings revealed that the maximum temperature rise rates on the backside of laminated boards and sandwich panels were 3.7 ℃/s and 0.48 ℃/s, respectively, indicating that the insulation performance of the sandwich panel surpasses that of the laminated board. The established external heat flux model demonstrates that as the spacing increases, the convective heat transfer between the two types of panels gradually diminishes. The laminated board transitions to thermal radiation ignition, whereas the thermal convection of the sandwich panel still dominates the heat transfer process. When the power of the high-temperature heat source on the near-fire side remains constant, the critical distances for igniting the three combustibles on the laminated board are 1.0 cm, 3.0 cm, and 6.0 cm, respectively. The sandwich panel is incapable of igniting pine wood, while the critical distances for igniting cotton and corrugated cardboard are both 1.0 cm. Notably, the ignition time of sandwich panels is significantly longer than that of laminated panels. Specifically, the ignition time of sandwich panels is significantly longer than that of laminated panels, increasing to 202 s and 190 s, respectively, when the spacing is 1.0 cm.
|
|
Published:
Online: 2025-10-27
|
|
|
|
|
1 Sun Z Q, Wu A R. Materials Reports, 2015, 29(11), 61(in Chinese). 孙振起, 吴安如. 材料导报, 2015, 29(11), 61. 2 Federal Aviation Administration USA. Appendix E to part 178, title 49-flame penetration resistance-test (2024-09-24), https://www. ecfr. gov/current/title-49/appendix-Appendix%20E%20-to%20Part%20178. 3 Aircraft airworthiness Certification Department Civil Aviation Administration of China. Flame burnthrough test for aircraft cargo liners: MH/T 6086-2012, Civil Aviation Administration of China, China, 2012(in Chinese). 中国民用航空局航空器适航审定司. 中华人民共和国民用航空行业标准 飞机货舱衬板耐烧穿实验: MH/T 6086-2012, 中国民用航空局, 2012. 4 Department of Policies and Regulations, Civil Aviation Administration of China. Civil aviation regulations of China: Part 25: Airworthiness standards for transport aircraft: CCAR25-R4, Civil Aviation Administration of China, China, 2011(in Chinese). 中国民用航空局政策法规司. 中国民用航空规章 第25部 运输类飞机适航标准:CCAR-25-R4, 中国民用航空局, 2011. 5 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Fire-resistance tests-elements of building construction-part 1: general requirements: GB/T 9978. 1-2008, Standards Press of China, China, 2008 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. 建筑构件耐火试验方法. 第1部分:通用要求:GB/T 9978. 1-2008, 中国标准出版社, 2008. 6 Chiu H T, Chiu S H, Jeng R E, et al. Polymer Degradation and Stability, 2000, 70(3), 505. 7 Eibl S. Fire and Materials, 2012, 36(4), 309. 8 Shi S S, Wang Y, Jiang T, et al. ACS Omega, 2022, 7(33), 29433. 9 Henderson J B, Wiebelt J A, Tant M R. Journal of Composite Materials, 1985, 19(6), 579. 10 Henderson J B, Wiecek T. Journal of Composite Materials, 1987, 21(4), 373. 11 Tranchard P, Samyn F, Duquesne S, et al. Materials, 2017, 10(5), 470. 12 Benoit V, Adem A, Alexis C, et al. Composites Part B: Engineering, 2023, 262, 110807. 13 Papadogianni V, Romeos A, Giannadakis A, et al. Fire Technology, 2020, 56(3), 1253. 14 Papadogianni V, Romeos A, Perrakis K, et al. Heat and Mass Transfer, 2024, 60, 2049. 15 Hussain N, Jocelyn L, Thomas R. Fire and Materials, 2022, 46(8), 1135. 16 Liu T Q, Wang N, Zheng Q Y, et al. Chinese Journal of Engineering, 2020, 42(12), 1647(in Chinese). 刘天奇, 王宁, 郑秋雨, 等. 工程科学学报, 2020, 42(12), 1647. 17 Li H, Fan M H, Feng Z Y, et al. Acta Materiae Compositae Sinica, 2019, 36(6), 1457(in Chinese). 李翰, 樊茂华, 冯振宇, 等. 复合材料学报, 2019, 36(6), 1457. 18 Feng Z Y, Fan B X, Wang N S D, et al. Materials Reports, 2021, 35(2), 2191(in Chinese). 冯振宇, 范保鑫, 王纳斯丹, 等. 材料导报, 2021, 35(2), 2191. 19 Li D, Liu Y Z, Chen X, et al. Journal of Xi’an Jiaotong University, 2024, 58(8), 49(in Chinese). 李冬, 柳云钊, 陈鑫, 等. 西安交通大学学报, 2024, 58(8), 49. 20 Hou P F, Zhao B, Hu S L, et al. Acta Materiae Compositae Sinica, 2025, 42(3), 1678(in Chinese). 侯鹏飞, 赵璧, 胡胜利, 等. 复合材料学报, 2025, 42(3), 1678. 21 Chen S J, Xu Y Y, Wang Z, et al. Chinese Journal of Materials Research, 2020, 34(12), 933(in Chinese). 陈少杰, 徐艳英, 王志, 等. 材料研究学报, 2020, 34(12), 933. 22 Ji Z, Xu Y Y, Li J D, et al. Fire Science and Technology, 2020, 39(7), 994(in Chinese). 计智, 徐艳英, 李金都, 等. 消防科学与技术, 2020, 39(7), 994. 23 He Y H, Huang S, Jia X H, et al. Fire Science and Technology, 2018, 37(4), 456(in Chinese). 贺元骅, 黄松, 贾旭宏. 消防科学与技术, 2018, 37(4), 456. 24 Jia X H, Tang J, Ma J H, et al. Journal of Tsinghua University (Science and Technology), 2024, 64(1), 164(in Chinese). 贾旭宏, 汤婧, 马俊豪, 等. 清华大学学报(自然科学版), 2024, 64(1), 164. 25 Xu S. Study on fire prevention and smoke toxicity characteristics of composite materials for civil aircraft. Master’s Thesis, Shenyang Aerospace University, China, 2023 (in Chinese). 徐松. 民用飞机复合材料防火及烟毒特性研究. 硕士学位论文, 沈阳航空航天大学, 2023. 26 Jia X H, Yang X G, Xu S T, et al. Aerospace Materials & Technology, 2022, 52(4), 88(in Chinese). 贾旭宏, 杨晓光, 徐松涛, 等. 宇航材料工艺, 2022, 52(4), 88. 27 Zhang X Y, Jia X H, Dai S P, et al. Journal of Tsinghua University (Science and Technology), 2023, 63(10), 1520(in Chinese). 张晓宇, 贾旭宏, 代尚沛, 等. 清华大学学报(自然科学版), 2023, 63(10), 1520. 28 National Fire Protection Association. Standard for fire-retardant-treated wood and fire-retardant coatings for building materials: NFPA 703, National Fire Protection Association, Quincy, 2018. 29 Parker W, Lee B. Fire safety Research: Proceedings of a Symposium Held at the National Bureau of Standards, Gaithersburg, md. , 1974, pp. 139. 30 Chen X, Lu S, Li C, et al. Fire and Materials, 2014, 38(3), 409. 31 Wu S, Ma H, Mao Y J, et al. Packaging Engineering, 2023, 44(13), 292(in Chinese). 吴松, 马红, 毛勇建, 等. 包装工程, 2023, 44(13), 292. 32 Song S Q, Ren M J, Li C G, et al. Fire Science and Technology, 2022, 41(7), 888(in Chinese). 宋思齐, 任美杰, 李成钢, 等. 消防科学与技术, 2022, 41(7), 888. 33 Zhao Z Y, Zhang S C. Journal of Lanzhou Institute of Technology, 2023, 30(5), 48(in Chinese). 赵宗玉, 张树川. 兰州工业学院学报, 2023, 30(5), 48. 34 Feng Z Y, Wang N S D, Fan M H, et al. Fiber Reinforced Plastics/Composits, 2019(11), 24(in Chinese). 冯振宇, 王纳斯丹, 樊茂华, 等. 玻璃钢/复合材料, 2019(11), 24. 35 Zhang X Y, Jia X H, Ding S J, et al. Acta Materiae Compositae Sinica, 2024, 41(4), 1840(in Chinese). 张晓宇, 贾旭宏, 丁思婕, 等. 复合材料学报, 2024, 41(4), 1840. 36 Xu S T, Jia X H, Yang X G, et al. Plastics Science and Technology, 2022, 50(5), 29(in Chinese). 徐松涛, 贾旭宏, 杨晓光, 等. 塑料科技, 2022, 50(5), 29. 37 Ding S J, Jia X H, Tian W, et al. Acta Materiae Compositae Sinica, 2025, 42(4), 1910(in Chinese). 丁思婕, 贾旭宏, 田威, 等. 复合材料学报, 2025, 42(4), 1910. 38 Wang Z D. In: Science & Technique Committee of CFPA:China, 2022, pp. 58(in Chinese). 王在东. 中国消防协会学术工作委员会消防科技论文集:2022, pp. 58. 39 Tohir M Z M, Spearpoint M, Fleischmann C. Fire and Materials, 2018, 42(1), 69. |
|
|
|