METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
The Effects of Homogenization Treatment on the Microstructure and Properties of Age-strengthened Al-Mg-Zn-Sc-Zr Alloy |
LI Bo1,2,*, XU Long1,2, YANG Han1,2, DU Yong3
|
1 Hubei Engineering Research Center for Graphite Additive Manufacturing Technology and Equipment, China Three Gorges University, Yichang 443002, Hubei, China 2 College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, Hubei, China 3 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract The effects of homogenization treatment on the microstructure and properties of an age-strengthened Al-Mg-Zn-Sc-Zr alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness testing, and electrical conductivity measurements. The experimental results revealed that the as-cast Al-Mg-Zn-Sc-Zr alloy exhibited severe dendritic segregation, with a significant number of non-equilibrium T-Mg32(Al, Zn)49 second phases forming a continuous network along the grain boundaries. Additionally, a small amount of primary Al3(Sc, Zr) particles were observed within the α-Al matrix. The DSC curve indicated a distinct endothermic peak at 465 ℃ for the as-cast alloy; therefore, to prevent overburning, the homogenization temperature was set at 460 ℃. As the homogenization time was extended from 4 hours to 24 hours, the non-equilibrium T-Mg32(Al, Zn)49 second phases gradually dissolved back into the α-Al matrix, reducing their volume fraction from 6.45% to 0.55%. Simultaneously, a significant precipitation of dispersed secondary Al3(Sc, Zr) particles was observed. However, when the homogenization time was further extended to 32 hours, signs of overburning were detected. With the extension of homogenization time, the hardness and conductivity of the alloy increased first and then declined, and reached the maximum values of 116.71HV and 30.3%IACS at 24 hours. Based on the microstructural characterization and performance analysis, the optimal homogenization process for the as-cast Al-Mg-Zn-Sc-Zr alloy was determined to be 460 ℃ for 24 hours
|
Published: 25 August 2025
Online: 2025-08-15
|
|
|
|
1 Deng Y L, Zhang X M. The Chinese Journal of Nonferrous Metals, 2019, 29(9), 2115(in Chinese). 邓运来, 张新明. 中国有色金属学报, 2019, 29(9), 2115. 2 Hu Z L, Li P Z, Lu Z P et al. Rare Metal Materials and Engineering, 2021, 50(1), 23(in Chinese). 胡治流, 李平珍, 陆泽鹏, 等. 稀有金属材料与工程, 2021, 50(1), 23. 3 Fang H J, Liu H, Sun J,et al. Materials Reports, 2023, 37(21), 211(in Chinese). 房洪杰, 刘慧, 孙杰, 等. 材料导报, 2023, 37(21), 211. 4 Shen G W, Chen X L, Yan J, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(12), 4002 (in Chinese). 沈顾伟, 陈小林, 闫捷, 等. 中国有色金属学报, 2023, 33(12), 4002. 5 Ding Y S, Gao K Y, Guo S S, et al. Rare Metal Materials and Engineering, 2020, 49(5), 1803(in Chinese). 丁宇升, 高坤元, 郭姗姗, 等. 稀有金属材料与工程, 2020, 49(5), 1803. 6 Gao J M, Huang H, Shi W, et al. Journal of Materials Engineering, 2022, 50(11), 101(in Chinese). 高杰明, 黄晖, 石薇, 等. 材料工程, 2022, 50(11), 101. 7 Yang L, Luo B H, Zhan G, et al. Journal of Central South University, 2012, 43(12), 4666(in Chinese). 杨磊, 罗兵辉, 占戈, 等. 中南大学学报, 2012, 43(12), 4666. 8 Wang Y C, Tong X, You G Q, et al. Rare Metal Materials and Engineering, 2021, 50(3), 1069(in Chinese). 王一唱, 童鑫, 游国强, 等. 稀有金属材料与工程, 2021, 50(3), 1069. 9 Sun H M, Liu C L, Chen J, et al. Heat Treatment of Metals, 2023, 48(3), 263(in Chinese). 孙红梅, 刘翠玲, 陈健, 等. 金属热处理, 2023, 48(3), 263. 10 Zhang J, Gao Y, Yang C, et al. Rare Metal Materials and Engineering, 2020, 39(6), 636. 11 Zhou M, Gan P Y, Deng H H, et al. Materials China, 2018, 37(2), 154(in Chinese). 周民, 甘培原, 邓鸿华, 等. 中国材料进展, 2018, 37(2), 154. 12 Da X, Wu W, Wei S, et al. Intermetallics, 2023, 158,107907. 13 Ding J, Zhao Y J, Li Z F, et al. Materials Reports, 2020, 34(18), 18086(in Chinese). 丁俊, 赵艳君, 李志飞, 等. 材料导报, 2020, 34(18), 18086. 14 Zhang J, Tang C, Zhao J J, et al. Rare Metal Materials and Engineering, 2017, 46(11), 3491(in Chinese). 张静, 唐聪, 赵婧婧, 等. 稀有金属材料与工程, 2017, 46(11), 3491. 15 Wang P Y, Ye L Y, Ke B, et al. Journal of Central South University, 2024, 55(1), 55(in Chinese). 王鹏宇, 叶凌英, 柯彬, 等. 中南大学学报(自然科学版), 2024, 55(1), 55. 16 Li P Y, Xiong B Q, Zhang Y A, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(11), 2101. 17 He C Y, Mo W F, Luo B H, et al. Materials Reports, 2020, 34(12), 12083(in Chinese). 何翠云, 莫文锋, 罗兵辉, 等. 材料导报, 2020, 34(12), 12083. 18 Chao D Y, Yu F, Li H P, et al. Materials Reports, 2020, 34(S2), 1362(in Chinese). 晁代义, 于芳, 李红萍, 等. 材料导报, 2020, 34(S2), 1362. 19 Xiao J, Yin Z M, Huang J W, et al. Journal of Central South University, 2008(5), 975 (in Chinese). 肖静, 尹志民, 黄继武, 等. 中南大学学报, 2008(5), 975. 20 Liu T, He C, Li G, et al. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(5), 516. 21 Wang Y C, Yuan L Y, Yang L, et al. Rare Metal Materials and Engineering, 2023, 52(11), 3954(in Chinese). 王一唱, 袁灵洋, 杨磊, 等. 稀有金属材料与工程, 2023, 52(11), 3954. 22 Wang Y J, Ma H C, Xu Z D, et al. Journal of Materials Engineering, 2024, 1(11), 5(in Chinese). 王艳晶, 马寰宸, 徐再东, 等. 材料工程, 2024, 1(11), 5. 23 Yu F, Chao D Y, Xiong L, et al. Materials Reports, 2021, 35(S1), 411(in Chinese). 于芳, 晁代义, 邢雷, 等. 材料导报, 2021, 35(S1), 411. 24 Wu H L, Chen Y Q, Lin L, et al. Transactions of Nonferrous Metals Society of China, 2023, 33(11), 3689(in Chinese). 巫海亮, 陈宇强, 林林, 等. 中国有色金属学报, 2023, 33(11), 3689. 25 Liu L, Cui X Y, Jiang J T, et al. Materials Characterization, 2019, 157. 26 Ikeda K, Takashita T, Akiyoshi R, et al. Materials Transactions, 2018, 59(4), 590. 27 Knipling K E, Seidman D N, Dunand D C. Acta Mater, 2011, 59, 945. 28 Ding F J, Jia X D, Hong T J, et al. Materials Reports, 2021, 35(8), 8108(in Chinese). 丁凤娟, 贾向东, 洪腾蛟, 等. 材料导报, 2021, 35(8), 8108. 29 Yuan D L, Chen S Y, Zhou L, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(12), 2393 (in Chinese). 袁丁玲, 陈送义, 周亮, 等. 中国有色金属学报, 2018, 28(12), 2393. 30 Li C, Chen W L, Lei Y, et al. Journal of Materials Engineering, 2019, 47(2), 90 (in Chinese). 李灿, 陈文琳, 雷远, 等. 材料工程, 2019, 47(2), 90. |
|
|
|