INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Near-infrared-light-responsive Photothermal Conversion Performance of CuFe2O4 Nanospheres |
FAN Na1,†, YANG Mei1,†, LIU De’en1, XIE Haozhe1, WANG Ning1, HE Hao1, LI Xuejiao1,2,*
|
1 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China 2 School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China |
|
|
Abstract Photothermal therapy, a novel approach in cancer treatment, utilizes photothermal conversion agents to convert energy into thermal energy. This method offers advantages such as low toxicity, non-invasiveness, and high precision. In contrast to conventional near-infrared-Ⅰ-responsive photothermal therapy, the near-infrared-Ⅱ-induced photothermal therapy has provoked significant attention due to its lower energy dissipation in biological tissues, deeper tissue penetration, and higher spatial resolution. The key topic of the near-infrared-Ⅱ-induced photothermal therapy is to develop photothermal conversion agents with facile synthesis processes and high photothermal conversion efficiencies. The present work fabricated CuFe2O4 nanospheres via one-step solvothermal method using hexahydrate ferric chloride and dihydrate copper chloride as raw materials and ethylene glycol as the solvent, and conducted characterizations such as XRD, SEM, Raman spectroscopy, vibrating sample magnetometry, and absorption spectroscopy of the prepared samples. It furthermore investigated the photothermal heating and imaging performance, conversion efficiency, and stability of the CuFe2O4 nanospheres under biosafe power of both near-infrared-Ⅰ and -Ⅱ irradiation, and examined their in vitro killing effect to 4T1 tumor cells. It can be concluded that the CuFe2O4 nanospheres exhibit excellent photothermal conversion performance under near-infrared irradiation, and significant applicative potential in the field of near-infrared-responsive photothermal cancer treatment.
|
Published: 25 August 2025
Online: 2025-08-15
|
|
|
|
1 Xue Y E, Che J Y, Ji X M, et al. Chemical Society Reviews, 2022, 51(5), 1766. 2 Huang D Y, Xie D M. Materials Reports, 2023, 37(20), 22040099 (in Chinese). 黄道远, 谢德明. 材料导报, 2023, 37(20), 22040099. 3 Huang X Y, Lu Y, Guo M X, et al. Theranostics, 2021, 11(15), 7546. 4 Wang J, Sheng Z J, Guo J R, et al. Coordination Chemistry Reviews, 2023, 486, 215137. 5 Sun H T, Zhang Q, Li J C, et al. Nano Today, 2021, 37, 101073. 6 Yan X, Li K, Xie T Q, et al. Angewandte Chemie-international Edition, 2024, 63(13), e202318539. 7 Xie H H, Yang M, He X L, et al. Advanced Science, 2024, 11(7), 2306494. 8 Lagos K J, Buzza H H, Bagnato V S, et al. International Journal of Molecular Sciences, 2022, 23(1), 28. 9 Cheng Y R, Lu H T, Yang F, et al. Nanoscale, 2021, 13(5), 3049. 10 Feng S P, Lu J Y, Wang K L, et al. Chemical Engineering Journal, 2022, 435, 134886. 11 Chang M Y, Hou Z Y, Wang M, et al. Angewandte Chemie International Edition, 2021, 60(23), 12971. 12 Wang M, Chang M G, Li C X, et al. Advanced Materials, 2022, 34(4), 2106010. 13 Zhang J, Li J S, Zhang Q X, et al. Applied Surface Science, 2023, 624, 156848. 14 Zhen X, Pu K Y, Jiang X Q. Small, 2021, 17(6), 2004723. 15 Liu Q, Dang P P, Zhang G D, et al. CrystEngComm, 2022, 24(31), 5622. 16 Li X J, Xu Z L, Liu D Y, et al. Ceramics International, 2024, 50(6), 9132. 17 Chu X, Zhang L, Li Y, et al. Small, 2023, 19(7), 2205414. 18 Bobo D, Robinson K J, Islam J, et al. Pharmaceutical Research, 2016, 33(10), 2373. 19 Wang X H, Li Z P, Ding Y D, et al. Chemical Engineering Journal, 2020, 381, 122693. 20 Arias L S, Pessan J P, Miranda Vieira A P, et al. Antibiotics-Basel, 2018, 7(2), 46. 21 Meidanchi A, Ansari H. Journal of Cluster Science, 2021, 32(3), 657. 22 Zhang Z H, Xue H, Xiong Y, et al. Theranostics, 2024, 14(2), 547. 23 Akhavan O, Meidanchi A, Ghaderi E, et al. Journal of Materials Che-mistry B, 2014, 2(21), 3306. 24 Wang K, Yang P, Guo R R, et al. Chinese Chemical Letters, 2019, 30(12), 2013. 25 Li S, Ding H, Chang J H, et al. Journal of Colloid and Interface Science, 2022, 623, 787. 26 Chen N P, Li Y H, Li H H, et al. Colloids and Surfaces B:Biointerfaces, 2023, 229, 113445. 27 Bashkatov A N, Genina E A, Kochubey V I, et al. Journal of Physics D-Applied Physics, 2005, 38(15), 2543. 28 Li X J, Li B, Li R, et al. Journal of Alloys and Compounds, 2023, 936, 168161. 29 Dilliard S A, Siegwart D J. Nature Reviews Materials, 2023, 8(4), 282. 30 Qin H, He Y Z, Xu P, et al. Green Energy & Environment, 2024, 9(4), 732. 31 Wang A, Yang H W, Song T, et al. Nanoscale, 2017, 9(41), 15760. 32 Shan L, Fang Z, Ding G, et al. Journal of Colloid and Interface Science, 2024, 653, 94. |
|
|
|