METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Porous Copper Foil for Negative Current Collector in Lithium Metal Batteries |
XIAO Siqi2, LI Yong1,2,*, LIU Ziliang2, LIANG Shuzhen2, LIU Yufeng2
|
1 Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichun 336023, Jiangxi, China 2 School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China |
|
|
Abstract Porous copper, as an anode collector for lithium metal batteries, has excellent conductivity, a huge surface area and good economic cost-effectiveness. In the process of charging and discharging, there are problems such as uncontrolled growth of lithium dendrites and the shedding of dendrites into "dead lithium", thus reducing the capacity, which seriously affects the battery’s lifespan and cycling stability, whereas the 3D structure of the porous copper foil can effectively alleviate the problem of dendrite growth, and the large number of pore spaces on the surface and in the interior greatly increases the space to accommodate the active substance, the high curvature of the pore edges makes the current density in this region higher, which can induce lithium deposition to the inside of the pores, effectively avoiding lithium dendritic growth on the surface, and the lithophilic modification can reduce the overpotential of lithium nucleation on metallic copper, effectively stabilizing the lithium deposition behavior. This paper introduces the current research status of porous copper as anode collector for lithium metal batteries and its preparation method of lithophilic modification of copper foil, analyzes the lithium storage mechanism of porous copper and the advantages of lithophilic modification, looks forward to the application prospect of porous copper collector, and points out the problems existing in the current research.
|
Published: 25 August 2025
Online: 2025-08-15
|
|
|
|
1 Wang J, Huang W, Pei A, et al. Nature Energy, 2019, 4(8), 664.
2 Lin D, Liu Y, Cui Y. Nature Nanotechnology, 2017, 12(3), 194.
3 Chen J, Zhao J, Lei L, et al. Nano Letters, 2020, 20(5), 3403.
4 Cheng X B, Zhang R, Zhao C Z, et al. Chemical Reviews, 2017, 117(15), 10403.
5 Peled E, Menkin S. Journal of the Electrochemical Society, 2017, 164(7), A1703.
6 Cui S, Zhai P, Yang W, et al. Small, 2020, 16(5), 1905620.
7 Zhou M, Lyu Y, Liu Y, et al. Journal of Alloys and Compounds, 2019, 791, 364.
8 Zhou H P, Zhang H, Wang H M, et al. Journal of Alloys and Compounds, 2023, 935, 168081.
9 Dong Q, Wang M, Huang X, et al. Electrochimica Acta, 2023, 442, 141914.
10 Chen C, Liang Q, Wang G, et al. Advanced Functional Materials, 2022, 32(4), 2107249.
11 Li M, Chen C, Luo H, et al. Journal of Materials Chemistry A, 2024, 12(17), 10072.
12 Lin Z, Guo X, Yang Y, et al. Journal of Energy Chemistry, 2021, 52, 67.
13 Zhang J G, Xu W, Xiao J, et al. Chemical Reviews, 2020, 120(24), 13312.
14 Li W, Zheng S, Gao Y, et al. Nano Letters, 2023, 23(17), 7805.
15 Chen J, Li S, Qiao X, et al. Small, 2021, 18(6), 2105999.
16 Yun Q, He Y B, Lv W, et al. Advanced Materials, 2016, 28(32), 6932.
17 Kaboli S, Zhu W, Clément D, et al. ACS Applied Energy Materials, 2023, 6(8), 4257.
18 Wang S H, Yin Y X, Zuo T T, et al. Advanced Materials, 2017, 29(40), 1703729.
19 An Y, Tian Y, Wei C, et al. Nano Today, 2021, 37, 101094.
20 Xu Y, Yu B, Wang Y, et al. Electrochimica Acta, 2022, 435, 141337.
21 Zhou B, Bonakdarpour A, Stoševski I, et al. Progress in Materials Science, 2022, 130, 100996.
22 Li H Y, Lu A K, Wang S S. Journal of Alloys and Compounds, 2022, 921, 165995.
23 Zhao H, Lei D, He Y B, et al. Advanced Energy Materials, 2018, 8(19), 1800266.
24 Luan C, Chen L, Li B, et al. ACS Applied Energy Materials, 2021, 4(12), 13903.
25 Yang C P, Yin Y X, Zhang S F, et al. Nature Communications, 2015, 6(1), 8058.
26 Han J, Li C, Lu Z, et al. Acta Materialia, 2019, 163, 161.
27 Xu Y Z. Fabrication of three-dimensional porous copper current collectorvia dealloying and investigation on stabilizing lithium metal anode. Master's Thesis, Shandong University, China, 2021 (in Chinese).
许岩昭. 三维多孔铜集流体的脱合金制备及稳定锂金属负极的研究. 硕士学位论文, 山东大学, 2021.
28 An Y, Fei H, Zeng G, et al. Nano Energy, 2018, 47, 503.
29 Yu S, Guo W, Huang R H, et al. Foundry, 2024, 73(3), 321(in Chinese).
余圣, 郭威, 黄润华, 等. 铸造, 2024, 73(3), 321.
30 Lu D J, Wan X Q, Mou J J, et al. Chinese Journal of Engineering, 2024, 46(2), 239(in Chinese).
路笃江, 万修芹, 牟津津, 等. 工程科学学报, 2024, 46(2), 239.
31 Shi Y J. Fabrication and structure regulation of nanoporous metals via li-quid/vapor metal-assisted alloying-dealloying. Ph. D. Thesis, Shandong University, China, 2023 (in Chinese).
石玉君. 纳米多孔金属的液/气相合金化-脱合金制备及结构调控. 博士学位论文, 山东大学, 2023.
32 Zhang S P. Structural design of three-dimensional Cu-based current collector and stable deposition behavior of Li metal. Ph. D Thesis, University of Chinese Academy of Sciences, China, 2023 (in Chinese).
张世鹏. 三维铜基集流体的结构化设计及稳定锂金属沉积行为的研究. 博士学位论文, 中国科学院大学, 2023.
33 Lin H, Zhang Z, Wang Y, et al. Advanced Functional Materials, 2021, 31(30), 2102735.
34 Ke X, Cheng Y, Liu J, et al. ACS Applied Materials & Interfaces, 2018, 10(16), 13552.
35 Zhang Y, Li L, Zhao Y G. Electroplating & Finishing, 2018, 37(16), 5(in Chinese).
张岩, 李丽, 赵玉刚. 电镀与涂饰, 2018, 37(16), 5.
36 Jia Y P, Sun W C, Bai Z B, et al. Journal of the Electrochemical Society, 2023, 170(8), 083509.
37 Lei L N. Construction of novel porous copper current collector and study on stabilization of lithium metal anode. Master's Thesis, University of Post and Telecommunications, China, 2021 (in Chinese).
雷琳娜. 新型多孔铜集流体的构建及稳定锂金属负极的研究. 硕士学位论文, 南京邮电大学, 2021.
38 Fan H, Dong Q, Gao C, et al. Materials Letters, 2019, 234, 69.
39 Li Q, Mei X, Sun X, et al. Journal of Energy Storage, 2023, 62, 106915.
40 Lim G J H, Lyu Z, Zhang X, et al. Journal of Materials Chemistry A, 2020, 8(18), 9058.
41 Lee G, Ha J, Lee J, et al. Journal of Materials Chemistry A, 2023, 11(12), 6144.
42 Leng J, Liang H, Wang H, et al. Nano Energy, 2022, 101, 107603.
43 Yan K, Lu Z, Lee H W, et al. Nature Energy, 2016, 1(3), 16010.
44 Liu S, Zhang X, Li R, et al. Energy Storage Materials, 2018, 14, 143.
45 Wang X, He Y, Tu S, et al. Energy Storage Materials, 2022, 49, 135.
46 Wang G, Xiong X, Zou P, et al. Chemical Engineering Journal, 2019, 378, 122243.
47 Zou P, Chiang S W, Li J, et al. Energy Storage Materials, 2019, 18, 155.
48 Zhang Z, Xu X, Wang S, et al. ACS Applied Materials & Interfaces, 2016, 8(40), 26801.
49 Dong Q, Zhang W, Gao M, et al. Chemical Engineering Journal, 2023, 471, 144483.
50 Zhang X Q, Chen X, Xu R, et al. Angewandte Chemie International Edition, 2017, 56(45), 14207. |
|
|
|