METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Effect of Carbon Content on High Cycle Fatigue Behavior of Twinning-induced Plasticity Steel |
SUN Weijie1, LIU Shuai1,*, HUANG Jiulong1, LI Dongdong2, YUAN Zebo3, ZHANG Yan3, FENG Yunli1
|
1 College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, Hebei, China 2 College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China 3 Shougang Jingtang United Iron and Steel Co., Ltd., Tangshan 063210, Hebei, China |
|
|
Abstract In this work, stress-controlled fully reverse tension-compression fatigue tests were carried out to investigate the high cycle fatigue behavior of two different carbon content (0.6C, 1.0C) TWIP steels. The effects of carbon content on the high cycle fatigue properties and microstructure evolution of Fe-Mn-C TWIP steel were analyzed via different scale microscopic characterization. The results show that compared with 0.6C steel, 1.0C steel shows a higher fatigue life and a higher fatigue limit. Microstructure analysis revealed that the number of slip bands and dislocation density of 0.6C steel were higher than those of 1.0C steel. Fatigue cracks tend to initiate at the intersection of soft and hard phase grains and propagate along grain boundaries, annealing twins, and slip bands. Metal inclusions or surface defects near the surface cause stress concentration, which is easy to form fatigue crack source. Carbon plays a role in improving the stacking fault energy in TWIP steel, the lower stacking fault energy of 0.6C steel promotes planar slip of dislocations, leading to accumulation of dislocation pile-ups that trigger crack nucleation. This is the main reason for the reduction of fatigue life in 0.6C steel.
|
Published: 15 August 2025
Online: 2025-08-15
|
|
|
|
1 Suh D W. Material Science Technology, 2014, 30(10), 1131. 2 Wang C, Cai W, Sun C, et al. Materials Science and Engineering A, 2022, 835, 142673. 3 Guo X, Sun C, Wang C, et al. International Journal of Plasticity, 2021, 145, 103076. 4 Song W S, Lee H J, Lee J H, et al. International Journal of Fatigue, 2016, 85, 57. 5 Di S, Heinz B T, Michael V. International Journal of Fatigue, 2023, 174, 107737. 6 Guo P C, Qian L H, Meng J Y, et al. Journal of Materials Research and Technology, 2024, 30, 2086. 7 Mi Z L, Wu H P, Wu Y X, et al. Journal of Iron and Steel Research, 2015, 27(11), 48 (in Chinese). 米振莉, 吴海鹏, 吴彦欣, 等. 钢铁研究学报, 2015, 27(11), 48. 8 Shao C, Zhang P, Liu R, et al. Acta Materialia, 2016, 103, 781. 9 Wang X, Liang Z Y, Liu R D, et al. Materials Science & Engineering A, 2015, 647, 249. 10 Seo W, Jeong D, Sung H, et al. Materials Characterization, 2017, 124, 65. 11 Liu R, Zang Z J, Li L L, et al. Scientific Reports, 2015, 5(1), 9550. 12 Dan W, Zhang W, Huang T. Procedia Manufacturing, 2020, 50, 541. 13 Liu S, Qian L H, Meng J Y, et al. Materials Science and Engineering A, 2015, 639, 425. 14 Hamada A S, Karjalainen L P. Materials Science and Engineering, 2009, 517, 68. 15 Niendorf T, Lotze C, Canadinc D, et al. Materials Science and Enginee-ring A, 2008, 499(1), 518. 16 Hamada A S, Karjalainen L, et al. Metallurgical and Materials Transactions, 2010, 41A (5), 1102. 17 Hamada A S, Karjalainen L. Materials Science Engineering A, 2010, 527(21-22), 5715. 18 Vincent L, Roux L J, Taheri S. International Journal of Fatigue, 2011, 38, 84. 19 Kamaya M, Kawakubo M. International Journal of Fatigue, 2015, 74, 20. 20 Thompson A. Acta Metallurgica, 1972, 20(9), 1085. 21 Meggiolaro M, Miranda A, Castro J, et al. International Journal of Fatigue, 2005, 27(10), 1398. 22 Li M R, Yang Z G, Shi X B, et al. Heat Treatment of Metals, 2019, 44(11), 219 (in Chinese). 李茂仁, 杨振国, 史显波, 等. 金属热处理, 2019, 44(11), 219. 23 Subra S, translated by Wang Z G, et al. Fatigue of materials, National Defense Industry Press, China, 1993, pp. 201 (in Chinese). Subra S著, 王中光等译. 材料的疲劳, 国防工业出版社, 1993, pp. 201. 24 Olson G B, Cohen M. Metallurgical Transactions A, 1976, 7(12), 1897. 25 Dumay A, Chateau J, Allain S, et al. Materials Science and Engineering A, 2006, 483, 184. 26 Mi Z L, Tang D, Yan L, et al. Journal of Materials Science and Technology, 2005, 21(4), 451. 27 Ding K, Wang Y F, Lei M, et al. Journal of Manufacturing Processes, 2022, 76, 365. |
|
|
|