METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Electrochemical Dissolution Behavior of the Nickel-based Superalloy of DD90 |
QU Jiuhao, LEI Kuan, MA Qisheng, ZHANG Yixin, LIU Guiqun, ZHANG Xiaoli*
|
School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China |
|
|
Abstract With the development of the country's demand for environment and energy, the recycling of precious material has become important. The electrochemical dissolution ofalloy is the core part in the wet recovery process. This work focused on electrochemical dissolution of the nic-kel-based superalloy of DD90, which used the weight-loss method by electrochemical workstation in sulfuric acid. The cyclic voltammetry curve, linear voltammetry curve, dynamic potential polarization curve and electrochemical impedance spectrum (EIS) were investigated to explore the nature of electrochemical dissolution and polarization. The experiment determined that the optimal current density was 0.4 A/cm2. In terms of energy consumption, a strange phenomenon was found. When the current density is between 0.2 A/cm2 and 0.6 A/cm2, the energy consumption of the system increases rapidly, and it begins to slow down under the current density from 0.6 A/cm2 to 0.8 A/cm2, while the current density exceeds 0.8 A/cm2, it gradually increases because of the impurity ions discharge. In addition, the anode slime growth models were established here. The SEM pictures reveal that the anode slime is thin and dense in the high concentration electrolyte and thick, while it is loose in the low concentration electrolyte. Overall, the findings provide an efficient approach for the electrochemical recovery of waste nickel-based alloys, facilitating the reuse of valuable metals. It aligns with green and sustainable development needs, promotes economic resource circulation, and offers new insights for achieving controlled alloy dissolution and efficient resource recovery.
|
Published:
Online: 2025-08-28
|
|
|
|
1 Chen Ruizhi, Liu Lirong, Guo Shengdong, et al. Journal of Materials Research, 2023, 37(10), 721(in Chinese). 陈瑞志, 刘丽荣, 郭圣东, 等. 材料研究学报, 2023, 37(10), 721. 2 Peng Zhifei, Wu Wenping. Journal of Applied Mechanics, DOI:61.1112.O3.20230718.1801.002 (in Chinese). 彭知非, 吴文平. 应用力学学报, DOI:61.1112.O3.20230718.1801.002. 3 Zhang Xiaoli, Zhou Yizhou, Jin Tao, et al. Acta Metallurgica Sinica, 2012, 48(10), 1229(in Chinese). 张小丽, 周亦胄, 金涛, 等. 金属学报, 2012, 48(10), 1229. 4 Zhang Xiaoli, Feng Li, Yang Yanhong, et al. Acta Metallurgica Sinica, 2020, 56(7), 969(in Chinese). 张小丽, 冯丽, 杨彦红, 等. 金属学报, 2020, 56(7), 969. 5 Luo Xiaoyu, Guo Jing, Guo Hanjie, et al. Special Steel, 2024, 45(1), 33(in Chinese). 罗小雨, 郭靖, 郭汉杰, 等. 特殊钢, 2024, 45(1), 33. 6 Wang Yu. Electrochemical behavior of copper, nickel, and iron recovery by direct electrolysis and fractional electrodeposition from copper-nickel alloy waste. Master's Thesis, Kunming University of Science and Technology, China, 2016(in Chinese). 王宇. 铜镍合金废料直接电解分级电积法回收铜、镍、铁的电化学行为研究. 硕士学位论文, 昆明理工大学, 2016. 7 Shan Guolei. Leaching process and optimization of rare and precious metals from superalloy waste. Master's Thesis, Lanzhou University of Technology, China, 2021(in Chinese). 单国雷. 高温合金废料中稀贵金属的浸出工艺及过程优化研究. 硕士学位论文, 兰州理工大学, 2021. 8 Li Bo, Zhu Jun, Li Jin, et al. Nonferrous Metals (Smelting), 2015(5), 51 (in Chinese). 李波, 朱军, 李进, 等. 有色金属(冶炼部分), 2015 (5), 51. 9 Shanghai Smelting Workshop No. 4. Nonferrous Metals, 1973(5), 50(in Chinese). 上海冶炼四车间. 有色金属, 1973(5), 50. 10 Liu Song, Gu Guobang. Inorganic Salt Industry, 1997(2), 38(in Chinese). 柳松, 古国榜. 无机盐工业, 1997 (2), 38. 11 Yu Zhuhuan, Guo Hao, Qu Lianying, et al. Rare Metal Materials and Engineering, 2017, 46(7), 1862(in Chinese). 余竹焕, 郭浩, 屈联莹, 等. 稀有金属材料与工程, 2017, 46(7), 1862. 12 Chen Peili, Wei Guoxia. Journal of Nankai University (Natural Science Edition), 2011, 44(6), 76(in Chinese). 陈培丽, 魏国侠. 南开大学学报(自然科学版), 2011, 44(6), 76. 13 Lin Yuzhen. A concise reader on metal corrosion and protection, Chemical Industry Press, China, 2019, pp. 17(in Chinese). 林玉珍. 金属腐蚀与防护简明读本, 化学工业出版社, 2019, pp, 17. 14 Peng Xin. Study on the electrochemical behavior and related parameters of rusted carbon steel corrosion in seawater environment, Master's Thesis, Ocean University of China, China, 2013(in Chinese). 彭欣. 海水环境中带锈碳钢腐蚀电化学行为及相关参数的研究, 硕士学位论文, 中国海洋大学. 2013. 15 Song Zengyi, Liu Li, Deng Li, et al. Journal of Chinese Society for Corrosion and Protection, 2018, 38(4), 365(in Chinese). 宋增意, 刘莉, 邓丽, 等. 中国腐蚀与防护学报, 2018, 38(4), 365. 16 Burstein G T, Cinderey R J. Corrosion Science, 1992, 33(3), 475. 17 Chen Kunkun, Cao Qigao, Zhang Busheng, et al. Nonferrous Metals (Smelting), 2020(9), 54(in Chinese). 陈昆昆, 操齐高, 张卜升, 等. 有色金属 (冶炼部分), 2020 (9), 54. 18 Belo M D C, Hakiki N E, Ferreira M G S. Electrochimica Acta, 1999, 44(14), 2473. 19 Tang Y, Xu Z. International Journal of Electrochemical Science, 2018, 13(1), 1105. 20 Hong Moxin, Lin Hao, Yang Baojun, et al. Transactions of Nonferrous Metals Society of China, 2023, 33(6), 1906. 21 Machet A, Galtayries A, Zanna S, et al. Electrochimica Acta, 2004, 49(22-23), 3957. 22 Palani Sarangapani, Lakshmanan Poovazhagan, Kaliyamurthy Rajkumar, et al. Materials and Manufacturing Processes, 2020, 35(16), 1860. 23 Guo Rui, Xu Wanxiang, Wang Jingkun, et al. Nonferrous Metals (Smelting), 2019(8), 57(in Chinese). 郭瑞, 许万祥, 王靖坤, 等. 有色金属 (冶炼部分), 2019 (8), 57. 24 Li Di. Principles of electrochemistry, Beihang University Press, China, 2008, pp, 37(in Chinese). 李荻. 电化学原理. 北京航空航天大学出版社, 2008, pp. 37. 25 Chinese Academy of Sciences. Metal corrosion and protection, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, China, 1975, pp. 203(in Chinese). 中国科学院. 金属腐蚀与防护, 中国科学院上海冶金所, 1975, pp. 203. 26 Cao Chunan. Principles of corrosion electrochemistry, Chemical Industy Press, China, 1985, pp. 1(in Chinese). 曹楚南. 腐蚀电化学原理,化学工业出版社, 1985, pp. 1. |
|
|
|