INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Study on the Absorption Performance of M-type Ferrite Based on Different Ratios of Calcium and Chromium |
WENG Xingyuan1,*, QIN Ying1, MA Zhijun2,*, ZHENG Yunsheng1, LI Zhuomin1, XING Huiling1
|
1 College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China 2 College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China |
|
|
Abstract The rapid development of electronic technology and electronic equipment and wireless communication systems is critical for both the civilian and military sectors. Effectively solving the problem of electromagnetic (EM) radiation pollution generated by it has been given more and more attention at the same time. In this work, M-type calcium-chromium ferrite (Ca1-xCrxFe12O19, x=0.1, 0.2, 0.3, 0.4, 0.5) was prepared by sol-gel-self-propagating combustion, and the sample was predicted to be an excellent electromagnetic wave absorbing material. The changes in crystal structure, microstructure and electromagnetic wave absorption characteristics of calcium chromium ferrites with different ion ratios were analyzed. The results show that:under the conditions of pH=7, self-propagating combustion temperature 200 ℃, crystallization temperature 950 ℃ and crystallization time 8 hours, nano-sized hexagonal calcium chromium ferrites with average particle size of 70.273—76.786 nm were successfully prepared. When x=0.2 and the thickness of absorbing layer is 3.5 mm, the reflection loss reaches -17.5 dB at the frequency of 14.6 GHz, and the effective absorption bandwidth extends to 3.75 GHz (12.22—15.62 GHz, 16.12—16.47 GHz). The doping of Ca2+ and Cr3+ in different proportions affects the grain size and magnetocrystalline anisotropy of ferrite, thus changing the electromagnetic parameters and absorption cha-racteristics of the material. This work broadens the development and application of high performance electromagnetic wave absorber.
|
Published:
Online: 2025-08-28
|
|
|
|
1 Yang S J, Cao Y, He Y B, et al. New Carbon Materials, DOI:10.1016/S1872-5805(24)60840-1 (in Chinese). 杨赏娟, 曹赟, 贺艳兵, 等. 新型炭材料, DOI:10.1016/S1872-5805(24)60840-1. 2 Xu B K, He Q H, Wang Y Q, et al. Applied Surface Science, 2023, 636, 157839. 3 Xu B K, He Q H, Wang Y Q, et al. Ceramics International, 2023, 49(18), 30125. 4 Thanh T D, Tran N, Thivietchinh N, et al. Journal of Alloys and Compounds, 2023, 952, 170060. 5 Zulkimi M, Azis R S, Ismail I, et al. Diamond and Related Materials, 2023, 137, 110118. 6 Xu B, He Q, Wang Y, et al. Ceramics International, 2023, 49(13), 21335. 7 Meshram M R, Agrawal N K, Sinha B, et al. Journal of Magnetism and Magnetic Materials, 2004, 271(2-3), 207. 8 Vinnik D A, Gudkova S A, Zherebtsov D A, et al. Journal of Magnetism and Magnetic Materials, 2019, 470, 97. 9 Tran N, Choi Y J, Phan T L, et al. Current Applied Physics, 2019, 19(12), 1343. 10 Mallesh S, Sunny A, Vasundhara M, et al. Journal of Magnetism and Magnetic Materials, 2016, 418, 112. 11 Jia P, Liu X, Li G, et al. Nanotechnology, 2006, 17, 3. 12 Sulaiman N H, Ghazali M J, Majlis B Y, et al. Bio-Medical Materials and Engineering, 2015, 26, S103. 13 Manjunatha B C, Rajashekara K M. Materials Today:Proceedings, 2021, 37, 363. 14 Ashiq M N, Qureshi R B, Malana M A, et al. Journal of Alloys and Compounds, 2014, 617, 437. 15 Gabal M A, Angari Y M A, Al-Juaid S S. Journal of Alloys and Compounds, 2010, 492(1-2), 411. 16 Chauhan C C, Gor A A, Gupta T, et al. Ceramics International, 2022, 48(14), 20134. 17 Ravleen, Kumar G S, Kaur B, et al. Materials Today:Proceedings, 2020, 28, 1. 18 Yang Y, Wang F, Shao J, et al. Journal of Alloys and Compounds, 2018, 765, 616. 19 Yang Y, Liu X, Feng S, et al. Chinese Journal of Physics, 2020, 63, 337. 20 Zhou X, Jia Z, Zhang X, et al. Journal of Materials Science & Technology, 2021, 87, 120. 21 Fei Y F, Jiao W L, Wu Z C, et al. Nanoscale, 2023, 15(29), 12193. 22 Alange R C, Khirade P P, Birajdar S D, et al. Journal of Molecular Structure, 2016, 1106, 460. 23 Junaid M, Nadeem M, Abubshait S A, et al. Ceramics International, 2020, 46(16), 25478. 24 Jin L, Yi P, Wan L, et al. Chemical Engineering Journal, 2022, 427, 130940. 25 Ali I, Islam M U, Ashiq M N, et al. Materials Research Bulletin, 2014, 49, 338. 26 Shu R, Zhang G, Wang X, et al. Chemical Engineering Journal, 2018, 337, 242. 27 Ma J, Li W, Fan Y, et al. ACS Applied Materials & Interfaces, 2019, 11(49), 46386. 28 Ma J, Fan S, Wang J, et al. Chemical Engineering Journal, 2022, 442, 136394. 29 Li Z, Li X, Zong Y, et al. Carbon, 2017, 115, 493. 30 Guan X, Yang Z, Zhou M, et al. Small Structures, 2022, 3, 2200102. 31 Shams M H, Salehi S M A, Ghasemi A. Materials Letters, 2008, 62(10-11), 1731. 32 Syazwan M M, Azis R S, Hashim M, et al. Journal of the Australian Ceramic Society, 2017, 53, 465. 33 Syazwan M M, Hashim M, Azis R S, et al. Journal of Materials Science:Materials in Electronics, 2017, 28, 8429. 34 Li B, Yue Z X, Qi X W, et al. Materials Science and Engineering B, 2003, 99(1-3), 252. |
|
|
|