INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
DFT Study on the Performance and Mechanism of Adsorption of Sulfide Pollutants on Boron-doped Carbon Nanotubes |
LI Hongtai, GUO Peng, AN Libao*
|
College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China |
|
|
Abstract Adsorption method is a common method for treating pollutants in water. Considering that the existing adsorbents can not meet the need for sulfide-containing sewage treatment, it is necessary to develop a new and efficient adsorption material. The effect of boron doping on the electronic structure of carbon nanotubes and their adsorption properties to SO42-, HS- and SCN- have been studied by using density functional theory calculations. The results show that the p-orbital electrons of boron atoms are filled into the Fermi level of carbon nanotubes during the doping process, which enhances the reactivity of carbon nanotubes for adsorption on the doping sites. Compared with intrinsic carbon nanotubes, boron-doped carbon nanotubes have a strong charge transfer effect with sulfides, and the final adsorption distance is greatly shortened, while the adsorption energy, charge transfer amount, and charge density significantly increases. Therefore, a stronger chemical adsorption is formed between boron-doped carbon nanotubes and sulfide pollutants.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Liu H, Zhang Q, Xing H X, et al. Fuel, 2015, 159, 68. 2 Fan Q, An L, Chang C, et al. Materials Reports, 2023, 37(21), 105 (in Chinese). 范青青, 安立宝, 常春蕊, 等. 材料导报, 2023, 37(21), 105. 3 Jiang C L, Cheng L L, Li C, et al. Ecotoxicology and Environmental Safety, 2022, 248, 114286. 4 Wu S, Du Z, Shen J, et al. Chemical Industry and Engineering Progress, 2023, 42(11), 5929 (in Chinese). 武诗宇, 杜志平, 申婧, 等. 化工进展, 2023, 42(11), 5929. 5 Zeng D L, Liu S L, Gong W J, et al. Clean-Soil Air Water, 2015, 43(7), 975. 6 Hao T W, Xiang P Y, Mackey H R, et al. Water Research, 2014, 65, 1. 7 Recalde-Ruiz D L, Andres-Gracia E, Diaz-Garcia M E. Analytical Letters, 2000, 33(8), 1603. 8 Lu X, Wang K, Cui Z. Materials Reports, 2022, 36(9), 26 (in Chinese). 卢学峰, 王宽, 崔志红. 材料导报, 2022, 36(9), 26. 9 Yang Z, Liu Z, Sklodowska A, et al. Microorganisms, 2021, 9(3), 611. 10 Lin H W, Kustermans C, Vaiopoulou E, et al. Water Research, 2017, 118, 114. 11 Shrestha S, Kulandaivelu J, Sharma K, et al. Chemical Engineering Journal, 2020, 387, 124073. 12 Kegl T, Košak A, Lobnik A, et al. Journal of Hazardous Materials, 2020, 386, 121632. 13 Zhang Y, An L, Fan Q, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(1), 139 (in Chinese). 张炎, 安立宝, 范青青, 等. 中国有色金属学报, 2022, 32(1), 139. 14 Wang Y, Wang B, Yang D, et al. Materials Reports, 2023, 37(22), 22 (in Chinese). 王娅鸽, 王彬彬, 杨德威, 等. 材料导报, 2023, 37(22), 22. 15 Guo P, An L, Zhang Y. Modern Physics Letters B, 2023, 36(36), 2250189. 16 Cui H, Chang X, Chen D, et al. Applied Surface Science, 2019, 471, 335. 17 Liu Y, Zhang H, Zhang Z, et al. Chemical Physics Letters, 2019, 730, 316. 18 Liu Y, An L, Gong L, et al. Acta Materiae Compositae Sinica, 2018, 35(5), 1332 (in Chinese). 刘扬, 安立宝, 龚亮, 等. 复合材料学报, 2018, 35(5), 1332. 19 Baydir E, Altun A, Fellah M F. Protection of Metals and Physical Che-mistry of Surfaces, 2022, 58(5), 949. 20 Wang K, Shi C, Zhao N, et al. Acta Physica Sinica, 2008, 57(12), 7833 (in Chinese). 王昆鹏, 师春生, 赵乃勤, 等. 物理学报, 2008, 57(12), 7833. 21 He W, Xue P, Du H, et al. International Journal of Hydrogen Energy, 2017, 42(7), 4123. 22 Sharma A, Patwardhan A, Dasgupta K, et al. Chemical Engineering Science, 2019, 207, 1341. 23 Ye L, Peng Z, Tian R, et al. Powder Technology, 2022, 410, 117848. 24 Wang G, Ding Y, Wang J, et al. International Journal of Minerals Metallurgy and Materials, 2013, 20, 522. 25 Chesnokov V V, Prosvirin I P, Gerasimov E Y, et al. Materials, 2023, 16(5), 1986. 26 Ha S, Choi G B, Hong S, et al. Carbon Letters, 2018, 27, 1. 27 Hamel S, Duffy P, Casida M E, et al. Journal of Electron Spectroscopy and Related Phenomena, 2002, 123(2-3), 345. 28 Levy M, Zahariev F. Physical Review Letters, 2014, 113(11), 113002. 29 Wu Z G, Cohen R E. Physical Review B, 2006, 73(23), 235116. 30 Abdel-Sattar M K, Taha M. Materials Research Express, 2020, 7(4), 045901. 31 Wang X, Wang X, Yin Q, et al. The Chinese Journal of Noferrous Metals, 2014, 24(5), 1327 (in Chinese). 王鑫, 王欣, 尹倩倩, 等. 中国有色金属学报, 2014, 24(5), 1327. 32 Abbasi M, Nemati-Kande E. Journal of Physics and Chemistry of Solids, 2021, 158, 110230. 33 Srivastava R, Khan M S, Shrivastava S, et al. Chemical Physics Letters, 2017, 667, 199. 34 Jia X, An L, Chen T. Adsorption-Journal of the International Adsorption Society, 2020, 26(4), 587. 35 Wang R, Zhang D, Sun W, et al. Journal of Molecular Structure:Theochem, 2007, 806(1-3), 93. 36 Du J, Min F, Zhang M, et al. Journal of China Coal Society, 2018, 43(9), 2625 (in chinese). 杜佳, 闵凡飞, 张明旭, 等. 煤炭学报, 2018, 43(9), 2625. 37 Yan K Y, Xue Q Z, Zheng Q B, et al. Journal of Physical Chemistry C, 2009, 113(8), 3120. 38 Afshari T, Mohsennia M. Molecular Simulation, 2019, 45(16), 1384. 39 Ganji M D, Ahangari M G, Khosravi A. Applied Surface Science, 2014, 290, 86. 40 Zhou Q, Wang C, Fu Z, et al. Computational Materials Science, 2013, 82, 337. 41 Perdew J P, Chevary J A, Vosko S H, et al. Physical Review B, 1992, 46(11), 6671. 42 Li W, Li G, Lu X, et al. Chemical Physics Letters, 2016, 658, 162. 43 Dag S, Gulseren O, Ciraci S. Chemical Physics Letters, 2003, 380(1-2), 1. |
|
|
|