METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Application of Copper-based Catalysts in Electrocatalytic Nitrate Reduction to Ammonia |
LIANG Caifeng1,2,, ZHAO Gang1,2,, WU Qi1,2,*
|
1 College of Science, Xizang University, Lhasa 850000, China 2 Tibet Key Laboratory of Plateau Oxygen and Living Environment, Xizang University, Lhasa 850000, China |
|
|
Abstract Nitrate contamination of groundwater has become a critical environmental issue that poses a serious threat to the development of human society. Electrocatalytic nitrate reduction to ammonia (NO3RR), is considered as one of the most effective ways to remove harmful nitrate substances from various types of wastewater and convert them to advantageous ammonia, but the research of the electrocatalysts are very challen-ging. Recently, Cu-based catalysts have shown high nitrate conversion efficiency, ammonia selectivity, and Faraday efficiency in promoting NO3RR performance due to their low cost, high activity, and ability to effectively inhibit Hydrogen evolution reaction, etc. Here we reviews the recent advances in metal catalysts for Cu, relevant single-atom, alloy, and compounds (oxides, hydroxides) catalysts in NO3RR, details the advantages and disadvantages of the various modifications as well as the conversion mechanism of NO3RR, and provides a brief overview of the future directions, challenges, and opportunities in this field.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Liu H, Lang X, Zhu C, et al. Angewandte Chemie International Edition, 2022, 61(23), e202202556. 2 Lei F, Zhang Y, Xu M, et al. ACS Sustainable Chemistry & Engineering, 2023, 11(24), 9057. 3 Gao Y, Wang R, Li Y, et al. Chemical Engineering Journal, 2023, 474(15), 145546. 4 He X, Liu H, Zhao W, et al. Separation and Purification Technology, 2024, 329, 125129. 5 Martín A J, Shinagawa T, Pérez-Ramírez J. Chem, 2019, 5(2), 263. 6 Liu L, Zheng S. ChemCatChem, 2024, 16, e202301641. 7 Jin D, Chen A, Lin B L. Journal of the American Chemical Society, 2024, 146(18), 12320. 8 Kong Y, Li Y, Sang X, et al. Advanced Materials, 2022, 34(2), 2103548. 9 Xu Y, Wang M, Ren K, et al. Journal of Materials Chemistry A, 2021, 9(30), 16411. 10 Wu J, Li J H, Yu Y X. The Journal of Physical Chemistry Letters, 2021, 12(16), 3968. 11 Yu Y, Wang C, Yu Y, et al. Science China Chemistry, 2020, 63(10), 1469. 12 Ye S, Chen Z, Zhang G, et al. Energy & Environmental Science, 2022, 15(2), 760. 13 Wang Y, Wang C, Li M, et al. Chem Soc Rev, 2021, 50(12), 6720. 14 Theerthagiri J, Park J, Das H T, et al. Environmental Chemistry Letters, 2022, 20(5), 2929. 15 Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, et al. Applied Catalysis B:Environmental, 2018, 236. 16 Ren Z, Shi K, Feng X. ACS Energy Letters, 2023, 8(9), 3658. 17 Gu Z, Zhang Y, Wei X, et al. Advanced Materials, 2023, 35(48), 2303107. 18 Mcenaney J M, Blair S J, Nielander A C, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(7), 2672. 19 Chen M, Zhuang S, Cheng J, et al. ACS Applied Materials & Interfaces, 2023, 15(13), 16680. 20 Liu M J, Guo J, Hoffman A S, et al. ECS Meeting Abstracts, 2023, MA2023-01(47), 2516. 21 Jin T, Wang J, Gong Y, et al. Chem Catalysis, 2023, 3(1), 100477. 22 Xu H, Wang X, Zhang Y, et al. Environmental Science & Technology, 2023, 57(37), 14091. 23 Zhang G, Wang G, Wan Y, et al. ACS Nano, 2023, 17(21), 21328. 24 Song Q, Li M, Hou X, et al. Applied Catalysis B:Environmental, 2022, 317, 121721. 25 Deng Z, Ma C, Li Z, et al. ACS Applied Materials & Interfaces, 2022, 14(41), 46595. 26 Liu M J, Miller D, Tarpeh W A. ECS Meeting Abstracts, 2023, MA2023-01(50), 2574. 27 Wang Y, Zhang W, Wen W, et al. Advanced Functional Materials, 2023, 33(46), 2302651. 28 Chen H, Zhang Z, Li Y, et al. Chemical Engineering Journal, 2024, 17, 481. 29 Hu T, Wang C, Wang M, et al. ASC Catalysis, 2021, 11(23), 14417. 30 Wei M, Li S, Wang X, et al. Advanced Energy and Sustainability Research, 2023, 5(1), 202300173. 31 Huang K, Tang K, Wang M, et al. Advanced Functional Materials, 2024, 34(24), 2315324. 32 Yu Z, Gu M, Wang Y, et al. Advanced Energy and Sustainability Research, 2024, 5(5), 2300284. 33 Karamad M, Goncalves T J, Jimenez-Villegas S, et al. Faraday Discussions, 2023, 243, 502. 34 Ye J, Yang Y, Teng M, et al. Dalton Transactions, 2024, 53(4), 1673. 35 Li Y, Wang C, Yang L, et al. Advanced Energy Materials, 2024, 14(7), 2303863. 36 Luo W, Guo Z, Ye L, et al. Small, 2024, 20(30), 2311336. 37 Pérez-Gallent E, Figueiredo M C, Katsounaros I, et al. Electrochimica Acta, 2017, 227. 38 Zhang X, Liu X, Huang Z F, et al. ACS Catalysis, 2023, 13(22), 14670. 39 Li C, Liu S, Xu Y, et al. Nanoscale, 2022, 14(34), 12332. 40 Xue Y, Yu Q, Ma Q, et al. Environmental Science & Technology, 2022, 56(20), 14797. 41 Liu Y, Ma J, Huang S, et al. Nano Energy, 2023, 117, 108840. 42 Fang J Y, Zheng Q Z, Lou Y Y, et al. Nature Communications, 2022, 13(1), 7899. 43 Zhang Y, Chen X, Wang W, et al. Applied Catalysis B:Environmental, 2022, 310, 121346. 44 Du Z, Yang K, Du H, et al. ACS Applied Materials & Interfaces, 2023, 15(4), 5172. 45 Yin D, Chen D, Zhang Y, et al. Advanced Functional Materials, 2023, 33(50), 2303803. 46 Shi Y, Li Y, Li R, et al. Chemical Engineering Journal, 2024, 479, 147574. 47 Wang W, Chen J, Tse E C M. Journal of the American Chemical Society, 2023, 145(49), 26678. 48 Lim J, Liu C Y, Park J, et al. ACS Catalysis, 2021, 11(12), 7568. 49 Wang Y, Qin X, Shao M. Journal of Catalysis, 2021, 400, 62. 50 Jiang H, Chen G F, Savateev O, et al. Angewandte Chemie International Edition, 2023, 62(13), e202305695. 51 Wu T, Kong X, Tong S, et al. Applied Surface Science, 2019, 489, 321. 52 Çirmi D, Aydön R, Köleli F. Journal of Electroanalytical Chemistry, 2015, 736, 101. 53 Song Z, Liu Y, Zhong Y, et al. Advanced Materials, 2022, 34(36), 2204306. 54 Zhu T, Chen Q, Liao P, et al. Small, 2020, 16(49), 2004526. 55 Leverett J, Tran-Phu T, Yuwono J A, et al. Advanced Energy Materials, 2022, 12(32), 2201500. 56 Zhu T, Chen Q, Liao P, et al. Small, 2020, 16(49), 2004526. 57 Zheng X, Yan Y, Li X, et al. Journal of Hazardous Materials, 2023, 446, 130679. 58 Murphy E, Liu Y, Matanovic I, et al. ACS Catalysis, 2022, 12(11), 6651. 59 Li X, Guo N, Chen Z, et al. Advanced Functional Materials, 2022, 32(25), 2200933. 60 Yao K, Fang Z, Yan W, et al. Chemical Communications, 2024, 60(20), 2756. 61 Fu W, Du Y, Jing J, et al. Applied Catalysis B:Environmental, 2023, 324, 122201. 62 Zhang M, Zhang Z, Zhang S, et al. ACS Catalysis, 2024, 14(14), 10437. 63 Wang F, Xiao L, Chen J, et al. ChemSusChem, 2020, 13(21), 5711. 64 Geng J, Ji S. Nano Research, 2024, 17(6), 4898. 65 Karmakar A, Karthick K, Sankar S S, et al. Journal of Materials Che-mistry A, 2021, 9(3), 1314. 66 Feng X, Jiao Q, Chen W, et al. Applied Catalysis B:Environmental, 2021, 286, 119869. |
|
|
|