METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Status on the Effect of Reactor Water Chemistry on the Corrosion Resistance of Zirconium Alloys |
CHEN Tianxu, LIAO Jingjing*, QIU Shaoyu
|
State Key Laboratory of Advanced Nuclear Energy Technology, Nuclear Power Institute of China, Chengdu 610213, China |
|
|
Abstract Zirconium alloys are extensively utilized in reactor fuel cladding for their superior properties, including high corrosion resistance and low thermal neutron absorption cross-section and good mechanical properties. However, the main cause of failure in zirconium alloy cladding during reactor operation is its susceptibility to corrosion, a subject extensively researched. As the service environment of zirconium alloy, the water environment plays a role in inhibiting the corrosion of materials except the transfer of heat energy, and the optimization of water chemistry is one of the most important measures to improve the economy and safety of the reactor. This paper reviews the influence of water chemistry on the corrosion resistance of zirconium alloys, and discusses how different chemical parameters affect this process. It provides insights into how water chemistry affects zirconium alloy's corrosion resistance, offers guidance on the future research directions of reactor water chemistry and zirconium alloy materials.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Motta A T, Couet A, Comstock R J. Annual Review of Materials Research, 2015, 45(1), 311. 2 Allen T R, Konings R J M, Motta A T, et al. Comprehensive Nuclear Materials. 2020, 64. 3 Bell B D C, Murphy S T, Burr P A, et al. Corrosion Science, 2016, 105, 36. 4 Cox B. Journal of Nuclear Materials, 2005, 336(2-3), 331. 5 Zhang T K, Li M R, Bai Y S, et al. The report on the development of China's nuclear energy (2023), Social Science Academic Press, China, 2023, pp. 8(in Chinese). 张廷克, 李闽榕, 白云生, 等. 中国核能发展报告(2023), 社会科学文献出版社, 2023, pp. 8. 6 Lister D. Journal of nuclear Science Technology, 2015, 52(4), 451. 7 Couet A, Motta A T, Ambard A, et al. Corrosion Science, 2017, 119, 1. 8 Harding J H. Journal of Nuclear Materials, 1993, 202(3), 216. 9 Couet A, Motta A T, Ambard A. Corrosion Science, 2015, 100, 73. 10 Ensor B, Motta A T, Lucente A, et al. Journal of Nuclear Materials, 2022, 558, 153358. 11 Kautz E, Gwalani B, Yu Z, et al. Journal of Nuclear Materials, 2023, 585, 154586. 12 Suchorab K, Gawęda M, Kosińska A, et al. Materials Characterization, 2023, 205, 113373. 13 Hu J, Setiadinata B, Aarholt T, et al. In:Zirconium in the nuclear industry:18th international symposium. US, 2018, pp. 93. 14 Allen T R, Konings R J M, Motta A T, et al. Comprehensive Nuclear Materials, 2012, 5, 49. 15 Bojinov M, Karastoyanov V, Kinnunen P, et al. Corrosion Science, 2010, 52(1), 54. 16 Jiang G, Liu L, Xu D, et al. The Journal of Supercritical Fluids, 2023, 193, 105828. 17 Krausová A, Macák J, Sajdl P, et al. Journal of Nuclear Materials, 2015, 467, 302. 18 Renčiuková V, Macák J, Sajdl P, et al. Journal of Nuclear Materials, 2018, 510, 312. 19 Stoll U, Slavinskaya N. Journal of Nuclear Science and Technology, 2023, 60(5), 573. 20 Yun G C, Cheng X Z. Water chemistry in pressurized water reactor, Harbin Engineering University Press, China, 2009, pp. 199 (in Chinese). 云桂春, 成徐州. 压水反应堆水化学, 哈尔滨工程大学出版社, 2009, pp. 199. 21 Xue C, Zhang Z, Tan J, et al. Corrosion Science, 2023, 211, 110909. 22 Oskarsson M, Ahlberg E, Pettersson K. Journal of Nuclear Materials, 2001, 295(1), 97. 23 Müller S, Lanzani L. Journal of Nuclear Materials, 2013, 439(1-3), 251. 24 Waheed A A F, Kandil A H, Khawassek Y M, et al. Journal of Nuclear Materials, 2017, 495, 27. 25 Müller S, Lanzani L. Procedia Materials Science, 2015, 8, 46. 26 Waheed A A F, Kandil A H T, Hamed H M. Annals of Nuclear Energy, 2016, 94, 168. 27 Kandil A H, Waheed A A F, Tawfik H M T. International Journal of Advanced Research, 2014, 2, 149. 28 Waheed A F, Kamel A N, Hamed H M. International Journal of Advanced Scientific and Technical Research, 2018, 8, 1. 29 Liu W Q, Zhou B X, Li Q. Nuclear Power Engineering, 2003, 24(3), 5(in Chinese). 刘文庆, 周邦新, 李强. 核动力工程, 2003, 24(3), 5. 30 Stephens G F, Owen M W, Ghardi E M, et al. Journal of Nuclear Materials, 2024, 588, 154780. 31 Stephens G F, Than Y R, Neilson W, et al. Solid State Ionics, 2021, 373, 115813. 32 Wei K, Wang X, Zhu M, et al. Corrosion Science, 2021, 181, 109216. 33 Zhou B X, Li Q, Liu W Q, et al. Rare Metal Materials and Engineering, 2006(7), 1009 (in Chinese). 周邦新, 李强, 刘文庆, 等. 稀有金属材料与工程, 2006(7), 1009. 34 Yao M Y, Gao C Y, Huang J, et al. Corrosion Science, 2015, 100, 169. 35 Liu J, He G, Callow A, et al. Acta Materialia, 2021, 215, 117042. 36 Bell B D C, Murphy S T, Grimes R W, et al. Acta Materialia, 2017, 132, 425. 37 Yao M Y, Zhou B X. Journal of Shanghai University (Natural Science Edition), 2020, 26(5), 681 (in Chinese). 姚美意, 周邦新. 上海大学学报(自然科学版), 2020, 26(5), 681. 38 Kiran Kumar M, Aggarwal S, Kain V, et al. Nuclear Engineering and Design, 2010, 240(5), 985. 39 Lai P, Lu J, Zhang H, et al. Journal of Nuclear Materials, 2020, 532, 152079. 40 Shibata A, Kato Y, Taguchi T, et al. Nuclear Technology, 2016, 196(1), 89. 41 Kim T, Choi K J, Yoo S C, et al. Corrosion Science, 2018, 131, 235. 42 Kim T, Kim S, Lee Y, et al. Corrosion Science, 2019, 157, 180. 43 Kim T, Couet A, Kim S, et al. Corrosion Science, 2020, 173, 108745. 44 Bojinov M, Cai W, Kinnunen P, et al. Journal of nuclear materials, 2008, 378(1), 45. 45 Kharitonova N L, Tyapkov V F. Thermal Engineering, 2018, 65(11), 846. 46 Wu X, Liu X, Zhang Z, et al. Corrosion Communications, 2022, 6, 52. |
|
|
|