METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Optimization Strategies for Thermoelectric Properties of Bi2Te3-based Materials |
BA Qian1, LIU Zhiyuan1,2,*, LI Zhou3, MA Ni4, MA Junjie1, GUAN Xicheng1, XIA Ailin1
|
1 Advanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, Anhui, China 2 Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230031, China 3 School of Materials Science and Engineering, Anhui University, Hefei 230601, China 4 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Bi2Te3-based materials are currently recognized as the best near room temperature thermoelectric materials due to their special crystal structure and band structure, low thermal conductivity, high seebeck coefficient, and carrier mobility. They have been widely used in the field of thermoelectric refrigeration. However, while as a core component of thermoelectric devices, the dimensionless thermoelectric figure of merit zT of Bi2Te3-based materials is still relatively low, resulting in lower conversion efficiency of the devices. Therefore, further improving the zT value of Bi2Te3-based materials is still crucial. This article mainly reviews the main research progress in recent years on optimizing the electrical and thermal transport properties of Bi2Te3-based materials through some strategies such as carrier engineering, band engineering, nano-engineering. These strategies can synergistically regulate the electrical and thermal transport performance, significantly improve the zT value of Bi2Te3-based materials, which can provide new research ideas for the development of efficient thermoelectric materials.
|
Published: 10 August 2025
Online: 2025-08-13
|
|
|
|
1 Snyder G J, Toberer E S. Nature Materials, 2008, 7(2), 105. 2 Von Lukowicz M, Abbe E, Schmiel T, et al. Energies, 2016, 9(7), 541. 3 Morata A, Pacios M, Gadea G, et al. Nature Communications, 2018, 9(1), 4759. 4 Yu J, Lai H J, Shi R Z, et al. Advanced Ceramics, 2023, 44(5-6), 397(in Chinese). 余锦, 赖华俊, 施润泽, 等. 现代技术陶瓷, 2023, 44(5-6), 397. 5 Venkatasubramanian R, Siivola E, Colpitts T, et al. Nature, 2001, 413(6856), 597. 6 Xiao Y, Li W, Chang C, et al. Journal of Alloys and Compounds, 2017, 724, 208. 7 Wang C, Kang W F, Zhang L H, et al. China Powder Science and Technology, 2021, 27(5), 111(in Chinese). 王聪, 康伟峰, 张林慧, 等. 中国粉体技术, 2021, 27(5), 111. 8 Poudel B, Hao Q, Ma Y, et al. Science, 2008, 320(5876), 634. 9 Deng R, Su X, Zheng Z, et al. Science Advances, 2018, 4(6), eaar5606. 10 Kim S I, Lee K H, Mun H A, et al. Science, 2015, 348(6230), 109. 11 Deng R, Su X, Hao S, et al. Energy & Environmental Science, 2018, 11(6), 1520. 12 Hu L P, Zhu T J, Yue X Q, et al. Acta Materialia, 2015, 85, 270. 13 Pan Y, Wei T R, Wu C F, et al. Journal of Materials Chemistry C, 2015, 3(40), 10583. 14 Hu L, Zhu T, Liu X, et al. Advanced Functional Materials, 2014, 24(33), 5211. 15 Hu L, Wu H, Zhu T, et al. Advanced Energy Materials, 2015, 5(17), 1500411. 16 Sun Y, Qin H, Wang W, et al. ACS Applied Energy Materials, 2021, 4(5), 4986. 17 Lim S S, Jung S J, Kim B K, et al. Journal of the European Ceramic Society, 2020, 40(8), 3042. 18 Pei Y, Wang H, Snyder G J. Advanced Materials, 2012, 24(46), 6125. 19 Makongo J P A, Misra D K, Zhou X, et al. Journal of the American Chemical Society, 2011, 133(46), 18843. 20 Zhu B, Wang W, Cui J, et al. Small, 2021, 17(29), 2101328. 21 Yang G, Niu R, Sang L, et al. Advanced Energy Materials, 2020, 10, 2000757. 22 Tang X, Xie W, Li H, et al. Applied Physics Letters, 2007, 90(1), 012102. 23 Shen J J, Zhu T J, Zhao X B, et al. Energy & Environmental Science, 2010, 3(10), 1519. 24 Horák J, Čermák K, Koudelka L. Journal of Physics and Chemistry of Solids, 1986, 47(8), 805. 25 West D, Sun Y Y, Wang H, et al. Physical Review B, 2012, 86(12), 121201. 26 Starý Z, Horák J, Stordeur M, et al. Journal of Physics and Chemistry of Solids, 1988, 49(1), 29. 27 Hu L, Meng F, Zhou Y, et al. Advanced Functional Materials, 2020, 30(45), 2005202. 28 Zhu Y K, Sun Y, Zhu J, et al. Small, 2022, 18(23), 2201352. 29 Wu Y, Zhai R, Zhu T, et al. Materials Today Physics, 2017, 2, 62. 30 Lee C H, Dharmaiah P, Kim D H, et al. ACS Applied Materials & Interfaces, 2022, 14(8), 10394. 31 Wei Z, Yang Y, Wang C, et al. RSC Advances, 2019, 9(4), 2252. 32 Go E H, Vasudevan R, Madavali B, et al. Powder Metallurgy, 2023, 66, 1. 33 Xiong C, Shi F, Wang H, et al. ACS Applied Materials & Interfaces, 2021, 13(13), 15429. 34 Sun Y, Wu H, Dong X, et al. Advanced Functional Materials, 2023, 33(28), 2301423. 35 Dharmaiah P, Lee K H, Song S H, et al. Materials Research Bulletin, 2021, 133, 111023. 36 Huang H, Li J, Chen S, et al. Journal of Solid State Chemistry, 2020, 288, 121433. 37 Wang X, Cheng J, Yin L, et al. Advanced Functional Materials, 2022, 32(24), 2200307. 38 Delves R T, Bowley A E, Hazelden D W, et al. Proceedings of the Physical Society, 1961, 78(5), 838. 39 Hu L P, Liu X H, Xie H H, et al. Acta Materialia, 2012, 60(11), 4431. 40 Yim W M, Fitzke E V, Rosi F D. Journal of Materials Science, 1966, 1(1), 52. 41 Jiang J, Chen L, Bai S, et al. Journal of Crystal Growth, 2005, 277(1), 258. 42 Hyun D B, Oh T S, Hwang J S, et al. Scripta Materialia, 1998, 40(1), 49. 43 Yamashita O, Tomiyoshi S, Makita K. Journal of Applied Physics, 2002, 93(1), 368. 44 Sokolov O B, Skipidarov S Y, Duvankov N I. Journal of Crystal Growth, 2002, 236(1-3), 181. 45 Yamanaka S, Kosuga A, Kurosaki K. Journal of Alloys and Compounds, 2003, 352(1-2), 275. 46 Hong S J, Lee Y S, Byeon J W, et al. Journal of Alloys and Compounds, 2006, 414(1), 146. 47 Seo J, Park K, Lee D, et al. Materials Science and Engineering:B, 1997, 49(3), 247. 48 Kajita K, Ishizuka T, Miura A, et al. Biochemical and Biophysical Research Communications, 2000, 277(2), 361. 49 Karaman I, Robertson J, Im J T, et al. Metallurgical and Materials Transactions A, 2004, 35(1), 247. 50 Jiang J, Chen L, Bai S, et al. Materials Science and Engineering:B, 2005, 117(3), 334. 51 Zhao L D, Zhang B P, Li J F, et al. Physica B:Condensed Matter, 2007, 400(1), 11. 52 Zhao L D, Zhang B P, Li J F, et al. Solid State Sciences, 2008, 10(5), 651. 53 El-Asfoury M S, Abdou S M, Nassef A. Journal of Alloys and Compounds, 2021, 887, 161399. 54 Liu X, Xing T, Qiu P, et al. Journal of Materiomics, 2023, 9(2), 345. 55 Qiu J, Yan Y, Luo T, et al. Energy & Environmental Science, 2019, 12(10), 3106. 56 Li Y Z, Zhang Q, Liu K, et al. Materials Today Nano, 2023, 22, 100340. 57 Zhou J, Feng J, Li H, et al. Small, 2023, 19(24), 2300654. 58 Chen Y Y, Shi Q, Zhong Y, et al. Chinese Physics B, 2023, 32(6), 67201. 59 Jung S J, Lee B H, Won S O, et al. Materials Letters, 2021, 301, 130278. 60 Guo S, Anand S, Brod M K, et al. Journal of Materials Chemistry A, 2022, 10(6), 3051. 61 Pei Y, Shi X, LaLonde A, et al. Nature, 2011, 473(7345), 66. 62 Ibáñez M, Hasler R, Genç A, et al. Journal of the American Chemical Society, 2019, 141(20), 8025. 63 Liu W, Tan X, Yin K, et al. Physical Review Letters, 2012, 108(16), 166601. 64 Qin B, Wang D, Liu X, et al. Science, 2021, 373(6554), 556. 65 Witting I T, Chasapis T C, Ricci F, et al. Advanced Electronic Materials, 2019, 5(6), 1800904. 66 Hashibon A, Elsässer C. Physical Review B, 2011, 84(14), 144117. 67 Ivanov O, Yaprintsev M, Lyubushkin R, et al. Scripta Materialia, 2018, 146, 91. 68 Jaworski C M, Kulbachinskii V, Heremans J P. Physical Review B, 2009, 80(23), 233201. 69 Kim H S, Heinz N A, Gibbs Z M, et al. Materials Today, 2017, 20(8), 452. 70 Kong D, Chen Y, Cha J J, et al. Nature Nanotechnology, 2011, 6(11), 705. 71 Heremans J P, Wiendlocha B. Materials aspect of thermoelectricity, CRC Press, USA, 2016, pp, 39. 72 Qin H, Zhang Y, Cai S, et al. Chemical Engineering Journal, 2021, 425, 130670. 73 Zhao X, Zhu X H, Zhang R Z. Physica Status Solidi A-Applications and Materials Science, 2016, 213(12), 3250. 74 Kawajiri Y, Tanusilp S, Kumagai M, et al. ACS Applied Energy Materials, 2021, 4(10), 11819. 75 Hu Q, Guo J, Zuo H, et al. Ceramics International, 2023, 49(19), 32144. 76 Zhang D, Lei J, Guan W, et al. Journal of Alloys and Compounds, 2019, 784, 1276. 77 Madavali B, Kim H S, Lee K H, et al. Intermetallics, 2017, 82, 68. 78 Chen T, Qin X, Ming H, et al. Chemical Engineering Journal, 2023, 467, 143397. 79 Liang S, Zhang M, Zhu H, et al. Current Applied Physics, 2023, 49, 143. 80 Cho H, Back S Y, Yun J H, et al. ACS Applied Materials & Interfaces, 2020, 12(34), 38076. 81 Aminorroaya Y S, Santos R, Fortulan R, et al. ACS Applied Materials & Interfaces, 2023, 15(15), 19220. 82 Dharmaiah P, Nagarjuna C, Sharief P, et al. Applied Surface Science, 2021, 556, 149783. 83 Wang Y S, Huang L L, Li D, et al. Journal of Alloys and Compounds, 2018, 758, 72. 84 Zhao L, Qiu W, Sun Y, et al. Journal of Alloys and Compounds, 2021, 863, 158376. 85 Thanh-Nam H, Babu M, Nersisyan H H, et al. Chemical Engineering Journal, 2022, 437, 135460. 86 Zhang Z, Zhao W, Zhu W, et al. Journal of Electronic Materials, 2020, 49(5), 2794. 87 Puneet P, Podila R, Karakaya M, et al. Scientific Reports, 2013, 3(1), 3212. 88 Puneet P, Podila R, Zhu S, et al. Advanced Materials, 2013, 25(7), 1033. 89 Du B, Lai X, Liu Q, et al. ACS Applied Materials & Interfaces, 2019, 11(35), 31816. 90 Chen Z, Ge B, Li W, et al. Nature Communications, 2017, 8(1), 13828. 91 Chen Z, Jian Z, Li W, et al. Advanced Materials, 2017, 29(23), 1606768. 92 Biswas K, He J, Blum I D, et al. Nature, 2012, 489(7416), 414. 93 Saglik K, Yahyaoglu M, Candolfi C, et al. Chemistry of Materials, 2023, 35(9), 3603. 94 Wang Y, Liu W D, Shi X L, et al. Chemical Engineering Journal, 2020, 391, 123513. 95 Deng M, Huang Y. Ceramics International, 2019, 45, 24914. 96 Hu Q, Qiu W, Chen L, et al. ACS Applied Materials & Interfaces, 2021, 13(32), 38526. 97 Yang G, Sang L, Mitchell D R G, et al. Chemical Engineering Journal, 2022, 428, 131205. 98 Li Y Z, Zhang Q, Liu K, et al. Materials Today Nano, 2023, 22, 100340. 99 Hu Y, Cui W, Lu W, et al. Journal of Alloys and Compounds, 2023, 949, 169850. 100 Li D, Li J M, Li J C, et al. Journal of Materials Chemistry A, 2018, 6(20), 9642. 101 Li Y, Ren M, Sun Z, et al. RSC Advances, 2021, 11(58), 36636. 102 Xu Y, Wu X, Zhu B, et al. ChemNanoMat, 2023, 9(2), e202200497. 103 Tan C, Tan X, Shi F, et al. Ceramics International, 2021, 47(1), 725. 104 Li C Y, Niu J X, Zhang J Y, et al. Journal of the European Ceramic Society, 2024, 44(2), 961. 105 Li G, Bajaj S, Aydemir U, et al. Chemistry of Materials, 2016, 28(7), 2172. 106 Quarez E, Hsu K F, Pcionek R, et al. Journal of the American Chemical Society, 2005, 127(25), 9177. 107 Lee M H, Byeon D G, Rhyee J S, et al. Journal of Materials Chemistry A, 2017, 5(5), 2235. 108 Zhao C, Li Z, Fan T, et al. Research, 2020, 2020, 1. 109 Jiang J, Chen L, Yao Q, et al. Materials Chemistry and Physics, 2005, 92(1), 39. 110 Perrin D, Chitroub M, Scherrer S, et al. Journal of Physics and Che-mistry of Solids, 2000, 61(10), 1687. 111 Termentzidis K, Pokropyvnyy O, Woda M, et al. Journal of Applied Physics, 2013, 113(1), 013506. 112 Shi X, Ai X, Zhang Q, et al. Journal of Advanced Ceramics, 2020, 9(4), 424. 113 Chen Z, Zhang X, Pei Y. et al. Advanced Materials, 2018, 30(17), 1705617. 114 Klemens P G. Proceedings of the Physical Society Section A, 1955, 68(12), 1113. 115 Kim S I, Lee K H, Mun H A, et al. Science, 2015, 348(6230), 109. 116 Pei Y, May A F, Snyder G J. Advanced Energy Materials, 2011, 1(2), 291. 117 Toberer E S, Zevalkink A, Snyder G J. Journal of Materials Chemistry, 2011, 21(40), 15843. 118 Liu Y, Zhou M, He J. Scripta Materialia, 2016, 111, 39. 119 Xin J, Wu H, Liu X, et al. Nano Energy, 2017, 34, 428. 120 Kim H S, Kang S D, Tang Y, et al. Materials Horizons, 2016, 3(3), 234. 121 Karolik A S, Luhvich A A. Journal of Physics:Condensed Matter, 1994, 6(4), 873. 122 Wang C, Du K, Song K, et al. Physical Review Letters, 2018, 120(18), 186102. 123 Zhang Q, Lin Y, Lin N, et al. Materials Today Physics, 2022, 22, 100573. 124 Faleev S V, Léonard F. Physical Review B, 2008, 77(21), 214304. 125 Rowe D M, Shukla V S, Savvides N. Nature, 1981, 290(5809), 765. 126 Zhang Q, Ai X, Wang L, et al. Advanced Functional Materials, 2015, 25(6), 966. 127 Hwang S, Kim S I, Ahn K, et al. Journal of Electronic Materials, 2013, 42(7), 1411. 128 Peng J, Fu L, Liu Q, et al. Journal of Materials Chemistry A, 2014, 2(1), 73. 129 Li C, Ma S, Wei P, et al. Energy & Environmental Science, 2020, 13(2), 535. 130 Vining C B. Journal of Applied Physics, 1991, 69(1), 331. 131 Savvides N, Goldsmid H J. Journal of Physics C:Solid State Physics, 1980, 13(25), 4657. 132 Vining C B, Laskow W, Hanson J O, et al. Journal of Applied Physics, 1991, 69(8), 4333. 133 Hyun D B, Hwang J S, Shim J D, et al. Journal of Materials Science, 2001, 36(5), 1285. 134 Dresselhaus M S, Chen G, Tang M Y, et al. Advanced Materials, 2007, 19(8), 1043. 135 Koga T, Cronin S B, Dresselhaus M S, et al. Applied Physics Letters, 2000, 77(10), 1490. 136 Zhao X B, Yang S H, Cao Y Q, et al. Journal of Electronic Materials, 2009, 38(7), 1017. 137 Zhu T J, Cao Y Q, Zhang Q, et al. Journal of Electronic Materials, 2010, 39(9), 1990. 138 Cao Y Q, Zhu T J, Zhao X B, et al. Applied Physics A, 2008, 92(2), 321. 139 Harman T C, Taylor P J, Walsh M P, et al. Science, 2002, 297(5590), 2229. 140 Xie W, Tang X, Yan Y, et al. Applied Physics Letters, 2009, 94(10), 102111. 141 Kim W, Zide J, Gossard A, et al. Physical Review Letters, 2006, 96(4), 045901. 142 Chen G. Physical Review B, 1998, 57(23), 14958. 143 Mamur H, Bhuiyan M R A, Korkmaz F, et al. Renewable and Sustai-nable Energy Reviews, 2018, 82, 4159. |
|
|
|