INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
First-principles Study on the Effect of Point Defects on the Structure, Electrical and Magnetic Properties of Two-dimensional Stanene |
SHEN Limeng1,2, LI Xi3,*, ZHANG Bo1
|
1 School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China 2 College of Physics, Sichuan University, Chengdu 610064, China 3 Yibin Research Institute, Chengdu Technological University (Yibin Campus), Yibin 644000, Sichuan, China |
|
|
Abstract Structural point defects always affect the structure, electrical and magnetic properties of stanene. This study used first-principles calculations based on density functional theory to systematically investigate the structures, formation energies, electrical and magnetic properties of se-veral typical point defect configurations in stanene, including single vacancy (SV) defects, double vacancy (DV) defects, Stone-Wales (SW) type defects, and adatom type defects. SW defects can be easily recovered by annealing and other processes due to their low reverse barrier;Both SV-1(55|66) and SV-2(3|555) defects are the most stable single-vacancy defect configuration;Due to the lower energy, a DV-1(5|8|5) defect can be formed by the merger of two single-vacancy defects;DV-2(555|777) defect can arise from DV-1(5|8|5) defect by overcoming a small diffusion barrier. The formation of adatom-type defect is an endothermic process. Once an adatom-type defect is formed, it becomes challenging to eliminate. All the aforementioned defects affect the electronic structures of stanene, and only adatom-type defect introduces magnetism into stanene.
|
Published: 25 June 2025
Online: 2025-06-19
|
|
|
|
1 Rani S, Suganthi K, Roy S C. Journal of Electronic Materials, 2023, 52(6), 3563. 2 Sahoo S K, Wei K H. Advanced Materials Interfaces, 2019, 6(18), 1900752 3 Lyu J K, Zhang S F, Zhang C W, et al. Annalen der Physik, 2019, 531(10), 1900017. 4 Huang H, Wang Z, Luo N, et al. Physical Review B, 2015, 92(7), 075138. 5 Xu Y, Gan Z, Zhang S C. Physical Review Letters, 2014, 112(22), 226801. 6 Wang J, Xu Y, Zhang S C. Physical Review B, 2014, 90(5), 054503. 7 Rachel S, Ezawa M. Physical Review B, 2014, 89(19), 195303. 8 Wu S C, Shan G, Yan B. Physical Review Letters, 2014, 113(25), 256401. 9 Xu Y, Tang P, Zhang S C. Physical Review B, 2015, 92(8), 81112. 10 Ni Z, Minamitani E, Ando Y, et al. Physical Review B, 2017, 96(7), 075427. 11 Zhang R, Ji W, Zhang C, et al. Physical Chemistry Chemical Physics, 2016, 18(40), 28134. 12 Chou B H, Huang Z Q, Hsu C H, et al. New Journal of Physics, 2014, 16(11), 115008. 13 Lyu Y J, Chen Y, Ye F C, et al. Acta Physica Sinica, 2024, 73(8), 083101 (in Chinese). 吕永杰, 陈燕, 叶方成, 等. 物理学报, 2024, 73(8), 083101. 14 Vogt P, De Padova P, Quaresima C, et al. Physical Review Letters, 2012, 108(15), 155501. 15 Zhu F F, Chen W J, Xu Y, et al. Nature Materials, 2015, 14(10), 1020. 16 Niu T, Zhou M, Zhang J, et al. Journal of the American Chemical Society, 2013, 135(22), 8409. 17 Deng J, Xia B, Ma X, et al. Nature Materials, 2018, 17(12), 1081. 18 Meyer J C, Kisielowski C, Erni R, et al. Nano Letters, 2008, 8(11), 3582. 19 Gass M H, Bangert U, Bleloch A L, et al. Nature Nanotechnology, 2008, 3(11), 676. 20 Kotakoski J, Krasheninnikov A V, Kaiser U, et al. Physical Review Letters, 2011, 106(10), 105505. 21 Feng B, Ding Z, Meng S, et al. Nano Letters, 2012, 12(7), 3507. 22 Liu H, Feng H, Du Y, et al. 2D Materials, 2016, 3(2), 025034. 23 Li S, Wu Y, Tu Y, et al. Scientific Reports, 2015, 5, 7881. 24 Sahin H, Sivek J, Li S, et al. Physical Review B, 2013, 88(4), 045434. 25 Haldar S, Amorim R G, Sanyal B, et al. RSC Advances, 2016, 6(8), 6702. 26 Banhart F, Kotakoski J, Krasheninnikov A V. ACS Nano, 2011, 5(1), 26. 27 Gao J, Zhang J, Liu H, et al. Nanoscale, 2013, 5(20), 9785. 28 Kresse G, Furthmüller J. Computational Materials Science, 1996, 6(1), 15. 29 Blöchl P E. Physical Review B, 1994, 50(24), 17953. 30 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865. 31 Henkelman G, Uberuaga B P, Jónsson H. The Journal of Chemical Physics, 2000, 113(22), 9901. 32 Kroes J M H, Akhukov M A, Los J H, et al. Physical Review B, 2011, 83(16), 165411. 33 Zhang H, Zhao M, Yang X, et al. Diamond and Related Materials, 2010, 19(10), 1240. 34 Kotakoski J, Krasheninnikov A V, Nordlund K. Physical Review B, 2006, 74(24), 245420. 35 Padilha J E, Pontes R B. Solid State Communications, 2016, 225, 38. 36 Hastuti D P, Nurwantoro P. Materials Today Communications, 2019, 19, 459. 37 Dávila M E, Xian L, Cahangirov S, et al. New Journal of Physics, 2014, 16(9), 95002. |
|
|
|