INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Mechanism, Application, and Challenges for Cement Solidification of Medium and Low Radioactive Waste: a Case Study of 90Sr |
YUE Hanwei, YANG Debo, CUI Zhu, ZHU Zhiguo, YU Lei, ZHU Yongchang*
|
China Building Materials Academy Co., Ltd., Beijing 100024, China |
|
|
Abstract During the operation of nuclear power plants and reprocessing plants, a large amount of medium and low-level radioactive wastes such as waste liquid, waste resin, waste activated carbon, chemical slurry will be generated. Which account for more than 90% of the total amount of nuclear fuel closed cycle waste, and have the characteristics of high toxicity and long half-life. Once the leakage occurs, it will cause serious harm to the ecological environment, so it needs to be treated safely and efficiently. Cement solidification technology is the most widely used method for the treatment of low and medium level radioactive wastes for its advantages of simple operation, simple process and low cost in the past few decades. Taking 90Sr nuclide as an example, this summary introduces the mechanism of nuclide adsorption and solidification in cement hydration system and the corresponding materials. In addition, the research status of cement solidification technology for treating waste resin, waste liquid, and slurry is reviewed. Finally, the current challenges are described, and the technology problems that need to be solved in the future are prospected.
|
Published: 25 April 2025
Online: 2025-04-18
|
|
|
|
1 Xu X G, Bi H F, Yu Y, et al. Journal of Nuclear Materials, 2021, 544, 1. 2 Marcial J, Riley B J, Kruger A A, et al. Journal of Hazardous Materials, 2024, 471, 1. 3 Iwaida T, Nagasaki S, Tanaka S. Studies in Surface Science and Catalysis, 2001, 132, 901. 4 Evans N D M. Cement and Concrete Research, 2008, 38, 543. 5 Gougar M L D, Scheetz B E, Roy D M. Waste Management, 1996, 16(4), 295. 6 Reddy D A, Khandelwal S K, Muthiah R, et al. Annals of Nuclear Energy, 2010, 37, 934. 7 Palomo M, Peñalver A, Aguilar C, et al. Journal of Hazardous Materials, 2010, 181, 716. 8 Plbcas L B, Pavlovic R S, Pavlovic S. Progress in Nuclear Energy, 2004, 44(1), 43. 9 Jackson S F, Monka S D, Riaz Z. Applied Radiation and Isotopes, 2014, 94, 254. 10 Gregsona C R, Goddardb D T, Sarsfield M J, et al. Journal of Nuclear Materials, 2011, 412, 145. 11 Osmanlioglu A E. Nuclear Engineering and Technology, 2018, 50, 886. 12 Chena G Y, Lia J W, Chen M, et al. Journal of Nuclear Materials, 2024, 588, 154803. 13 Sun Q N, Wang J L. Nuclear Engineering and Design, 2010, 240, 3660. 14 Li M F, Yang C L, Sun Y F, et al. Guangdong Chemical, 2022, 49(5), 123 (in Chinese). 李明富, 杨翠玲, 孙宇凡, 等. 广东化工, 2022, 49(5), 123. 15 Hafeez M A, Jeon J S, Hong S K, et al. Journal of Environmental Che-mical Engineering, 2021, 9(1), 104740. 16 Hafeez M A, Singh B K, Yang S H, et al. Chemical Engineering Journal Advances, 2023, 14, 100461. 17 Liu G B, Wang B C, Jiang Y C, et al. Journal of Nuclear and Radiochemistry, 2018, 40(6), 393(in Chinese). 刘国彪, 王兵臣, 蒋玉川, 等. 核化学与放射化学, 2018, 40(6), 393. 18 Hastings J J, Rhodes D, Fellerman A S, et al. Powder Technology, 2007, 174, 18. 19 Barlow S T, Fisher A J, Bailey D J, et al. Journal of Nuclear Materials, 2021, 552, 152965. 20 Gardner L J, Corkhill C L, Walling S A, et al. Cement and Concrete Research, 2021, 143, 106375. 21 Reddy D A, Khandelwal S K, Muthiah R, et al. Annals of Nuclear Energy, 2010, 37, 934. 22 Skripchenko S Y, Nalivaiko K A, Titova S M, et al. Hydrometallurgy, 2024, 224, 106255. 23 Kozai N, Suzuki S, Aoyagi N, et al. Water Research, 2015, 68, 616. 24 Zhang X Y, Gu P, Liu Y. Chemosphere, 2019, 215, 543. 25 Abdel-Rahman R O, Zin-El-Abidin D H A, Abou-Shady H, et al. Chemical Engineering Journal, 2013, 228, 772. 26 Zheng Z, Li Y X, Cui M X, et al. Science of the Total Environment, 2021, 755, 142581. 27 Kwon S H, Kim C H, Han E H, et al. Journal of Hazardous Materials, 2021, 408, 124419. 28 Putero S H, Rosita W, Santosa H B. Procedia Environmental Sciences, 2013, 17, 703. 29 Walling S A, Gardner L J, Prentice D P. Cement and Concrete Compo-sites, 2023, 135, 104823. 30 Lieberman R N, Green U, Segev G, et al. Fuel, 2015, 153, 437. 31 Tits J, Wieland E, Müller C J, et al. Journal of Colloid and Interface Science, 2006, 300, 78. 32 Youssef M, Pellenq R G M, Yildiz B. Physics and Chemistry of the Earth, 2014, 70-71, 39. 33 Dezerald L, Kohanoff J, Correa A A, et al. Environmental Science and Technology, 2015, 49, 13676. 34 Bahraq A A, Al-Osta M A, Al-Amoudi O S B, et al. Engineering, 2022, 15, 165. 35 Hong S Y, Glasser F P. Cement and Concrete Research, 1999, 29, 1893. 36 Shiner M E, Harnik Y, Klein-Ben D O, et al. Progress in Nuclear Energy, 2023, 159, 104634. 37 Geng G Q, Vasin R N, Li J Q, et al. Cement and Concrete Research, 2018, 113, 186. 38 Li K F, Pang X Y. Cement and Concrete Research, 2014, 65, 52. 39 Shrivastava O P, Shrivastava R. Cement and Concrete Research, 2001, 31, 1251. 40 Li J F, Chen L, Wang J L. Progress in Nuclear Energy, 2021, 141, 103957. 41 Ambrosino F, Esposito A M, Mancini F, et al. The European Physical Journal Plus, 2023, 138, 909. 42 Abdollahi T, Towfighi J, Rezaei-Vahidian H. Environmental Technology & Innovation, 2020, 17, 100592. 43 El-Kamash A M, El-Naggar M R, El-Dessouky M I. Journal of Hazar-dous Materials, 2006, B136, 310. 44 Osmanlioglu A E. Journal of Hazar-dous Materials, 2006, B137, 332. 45 Vyšvail M, Bayer P. Procedia Engineering, 2016, 151, 162. 46 Shi Y J. Performance research of weakly alkalinity alkali-activated slag cement immobilsing nuclear wastes. Ph. D. Thesis, Chongqing University, China, 2007 (in Chinese). 石拥军. 低碱度矿渣水泥固化放射性废物性能研究. 博士学位论文, 重庆大学, 2007 47 Kumar S, Kumar R, Bandopadhyay A, et al. Cement & Concrete Compo-sites, 2008, 30, 679. 48 Li C, Sun H H, Li L T. Cement and Concrete Research, 2010, 40, 1341. 49 Wang T F, Tu Y M, Guo T, et al. Journal of Environmental Applied Clay Science, 2024, 243, 107042. 50 Vandevenne N, Iacobescu R I, Pontikes Y, et al. Journal of Nuclear Materials, 2018, 503, 1. 51 Matsuzuru H, Ito A. Annals of Nuclear Energy, 1977, 4, 465. 52 Bougara A, Lynsdale C, Milestone N B. Cement & Concrete Composites, 2010, 32, 319. 53 Liu J R, Xu Y D, Zhang W S, et al. Progress in Nuclear Energy, 2024, 169, 105106. 54 Guo X, Zeng M L, Yu H D, et al. Journal of Cleaner Production, 2024, 459, 142457. 55 Wild S, Kinuthia J M, Jones G I. Engineering Geology, 1999, 51, 257. 56 Bijen J. Construction and Building Materials, 1996, 10(5), 309. 57 Taylor R, Richardson I G, Brydson R M D. Cement and Concrete Research, 2010, 40, 971. 58 Renaudin G, Filinchuk Y, Neubauer J. Cement and Concrete Research, 2010, 40, 370. 59 Gougar M L D, Scheetz B E, Roy D M. Waste Management, 1996, 16(4), 295. 60 Zhong H X, Yang L, Wang F Z. Cement and Concrete Research, 2024, 182, 107556. 61 Xu X G, Bi H F, Yu Y. Journal of Nuclear Materials, 2021, 544, 152701. 62 Chrysochoou M, Dermatas D. Journal of Hazardous Materials, 2006, 136, 20. 63 Lin J Y, Mahasti N N N, Huang Y H. Journal of Hazardous Materials, 2021, 407, 124401. 64 Christensen A N, Jensen T R, Hanson J C. Journal of Solid State Che-mistry, 2004, 177, 1944. 65 Lothenbach B, Winnefeld F. Cement and Concrete Research, 2006, 36, 209. 66 Collepardi M. Cement & Concrete Composites, 2003, 25, 401. 67 Tao Y X, Rahul A V, Manu K, et al. Cement and Concrete Composites, 2023, 137, 104908. 68 Liu J R, Xu Y D, Wang J L, et al. Journal of the Australian Ceramic Society, 2024, 60, 1131. 69 Gardner L J, Corkhill C L, Walling S A, et al. Cement and Concrete Research, 2021, 143, 106375. 70 Sun Q N, Wang J L. Nuclear Engineering and Design, 2010, 240, 3660. 71 Coumes C C D, Courtois S, Peysson S. Cement and Concrete Research, 2009, 39, 740. 72 Bescop P L, Bouniol P, Jorda M. Materials Research Society, 1990, 176, 183. 73 Osmanlioglu A E. Progress in Nuclear Energy, 2007, 49, 20. 74 Plecas I, Pavlovic R, Pavlovic S. Journal of Nuclear Materials, 2004, 327, 171. 75 Li J F, Zhao G, Wang J L. Nuclear Engineering and Design, 2005, 235, 817. 76 Sun Q N, Li J F, Wang J L. Nuclear Engineering and Design, 2011, 241, 5308. 77 Bagosi S, Csetenyi L J. Cement and Concrete Research, 1999, 29, 479. 78 Li J F, Wang J L. Journal of Hazardous Materials, 2006, B135, 443. 79 Lee W H, Cheng T W, Ding Y C, et al. Journal of Environmental Ma-nagement, 2019, 235, 19. 80 Lafond E, Coumes C C D, Gauffinet S, et al. Journal of Nuclear Materials, 2017, 483, 121. 81 Lafond E, Coumes C C D, Gauffinet S, et al. Cement and Concrete Research, 2015, 69, 61. 82 Neji M, Bary B, Bescop P L, et al. Journal of Nuclear Materials, 2015, 467, 544. 83 Duan Q J, Ge S H, Wang C Y. Journal of Power Sources, 2013, 243, 773. 84 Cronin J, Collier N. Mineralogical Magazine, 2012, 76(8), 2901. 85 Sayenko S Y, Shkuropatenko V A, Pylypenko O V, et al. Progress in Nuclear Energy, 2022, 152, 104315. 86 Covill A, Hyatt N C, Hill J, et al. Advances in Applied Ceramics, 2011, 110(3), 151. 87 Sinha P K, Shanmugamani A G, Renganathan K, et al. Annals of Nuclear Energy, 2009, 36, 620. 88 Zheng Z, Li Y X, Zhang Z H, et al. Journal of Hazardous Materials, 2020, 388(15), 121805. 89 Lee H K, Shon J S, Jang W H, et al. Annals of Nuclear Energy, 2023, 182, 109597. 90 Plecas I, Dimovic S, Smiciklas I. Progress in Nuclear Energy, 2006, 48, 495. 91 Kot’átková J, Zatloukal J, Reiterman P, et al. Journal of Environmental Radioactivity, 2017, 178-179, 147. 92 Walkley B, Ke X Y, Hussein O H, et al. Journal of Hazardous Materials, 2020, 382, 121015. 93 Li Q, Ma H S, Tang Y J, et al. Cement and Concrete Research, 2021, 144, 106430. 94 Li B, Ling X, Liu X, et al. Cement and Concrete Composites, 2019, 102, 94. 95 Kononenko O A, Kozlitin E A. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332, 4065. 96 Sun Q N, Wang J L. Nuclear Engineering and Design, 2010, 240, 3660. 97 Chen W, Ling X, Li Q, et al. Construction and Building Materials, 2019, 215, 777. 98 Sun Q N, Li J F, Wang J L. Nuclear Engineering and Design, 2011, 241, 4341. 99 Wang J, Shi D Q, Xia Y, et al. Journal of Environmental Chemical Engineering, 2024, 12(3), 113129. 100 Wang J L, Wan Z. Progress in Nuclear Energy, 2015, 78, 47. 101 Castro H A, Luca V, Banchi H L. Environmental Science and Pollution Research, 2017, 25, 21403. 102 Hafeeza M A, Singha B K, Yang S H, et al. Chemical Engineering Journal Advances, 2023, 14, 100461. 103 Dubois M A, Dozol J F, Nicotra C, et al. Journal of Analytical and Applied Pyrolysis, 1995, 31, 129. 104 Meng X, Désesquelles P, Xu J L. Journal of Environmental Sciences, 2024, 135, 433. 105 Gorbunova O. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 361. 106 Bar-Nes G, Klein-BenDavid O, Chomat L, et al. Cement and Concrete Research, 2018, 107, 152. 107 Perez-Cortes P, Garcia-Lodeiro I, Alonso M A, et al. Cement and Concrete Composites, 2024, 149, 105517. 108 Vyas M, Kulshrestha M. Materials Today: Proceedings, DOI:10. 1016/ j. matpr. 2023. 01. 275. 109 Wang R, Wang J S. Annals of Nuclear Energy, 2020, 147, 107679. 110 Domanskii I V, Mil’chenko A I, Sargaeva V Y, et al. Theoretical Foundations of Chemical Engineering, 2023, 57(2), 154. 111 Duffó G S, Farina S B, Schulz F M. Journal of Nuclear Materials, 2013, 438, 116. 112 Frizon F, Coumes C C D. Journal of Nuclear Materials, 2006, 359, 162. 113 Chen L, Li J F, Wang J L. Nuclear Engineering and Design, 2024, 417, 112794. 114 Chen L, Li J F, Wang J L. Nuclear Engineering and Design, 2024, 418, 112932. 115 Morin V, Garrault S, Begarin F, et al. Cement and Concrete Research, 2010, 40, 1459. 116 Tokar E A, Matskevich A I, Palamarchuk M S, et al. Nuclear Engineering and Technology, 2021, 53, 2918. 117 Zhao P, Zhou L L, Bai M, et al. Construction and Building Materials, 2019, 226, 483. 118 Ferreira E G A, Marumo J T, Franco M K K D, et al. Cement and Concrete Composites, 2019, 103, 339. 119 Barbhuiya S, Das S S, Qureshi T, et al. Journal of Environmental Ma-nagement, 2024, 356, 120712. 120 Stefanovsky S V, Yudintsev S V, Vinokurov S E, et al. Geochemistry International, 2016, 54(13), 1136. |
|
|
|