METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Progress in Effect of Alloying Elements on High Temperature Oxidation Resistance and Corrosion Resistance of Ferritic Stainless Steel for Automobile Exhaust System |
LI Weifeng1, ZHANG Tianli1,2,3,*, XU Lianyong2, HU Donghai3, CHEN Geng3, ZHU Zhiming4, LI Hong5
|
1 School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 2 School of Materials Science and Engineering, Tianjin University, Tianjin 100083, China 3 Zhejiang Hanwei Valve Manufacturing Co., Ltd., Lishui 323600, Zhejiang, China 4 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China 5 School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract Compared toaustenitic stainless steel, Ferritic stainless steel has many advantages such as low thermal expansion coefficient, low price and excellent heat resistance and corrosion resistance, which is widely used in automobile exhaust system. Because the automobile exhaust system is exposed to the external corrosion environment for a long time and is impacted by the high temperature and high pressure gas discharged by the engine, the high temperature oxidation resistance and corrosion resistance have always been the two major problems that plague the development of the automobile exhaust system. In this review, the influence mechanism of several key alloying elements on the high temperature oxidation resistance and corrosion resistance of ferritic stainless steel was reviewed, and the recommended ratio of alloying elements for ferritic stainless steel used in different parts of exhaust system to resist high temperature oxidation and corrosion was proposed. It has important engineering application and guiding value for the subsequent processing and remanufacturing of automobile exhaust system.
|
Published: 15 August 2025
Online: 2025-08-15
|
|
|
|
1 Wang W M, Mao H G. Baosteel Technology, 2005, 4, 56 (in Chinese). 王伟明, 毛惠刚. 宝钢技术, 2005, 4, 56. 2 Bi H Y, Wang Z Y, Li X, et al. World Iron & Steel, 2011, 11(5), 1 (in Chinese). 毕洪运, 王治宇, 李鑫, 等. 世界钢铁, 2011, 11(5), 1. 3 Badin V, Diamanti E, Forêt P, et al. Oxid Met, 2014, 82, 347. 4 Chen Y S. Study on high temperature oxidation behavior of ferritic stainless steel for hot end of exhaust system. Master's Thesis, Shanghai University, China, 2019 (in Chinese). 陈以生. 排气系统热端用铁素体不锈钢的高温氧化行为研究. 硕士学位论文, 上海大学, 2019. 5 Chen A Z, Ren J H, Li Z G, et al. China Metallurgy, 2018, 28(1), 27 (in Chinese). 陈安忠, 任娟红, 李照国, 等. 中国冶金, 2018, 28(1), 27. 6 Huttunen-Saarivirta E, Kuokkala V T, Pohjanne P. Corrosion Science, 2014, 87, 344. 7 Li X, Shu J, Bi H Y. Journal of Iron and Steel Research, 2013, 25(5), 54 (in Chinese). 李鑫, 舒俊, 毕洪运. 钢铁研究学报, 2013, 25(5), 54. 8 Shu J, Bi H Y, Li X, et al. Oxidation of Metals, 2012, 78(3), 253. 9 Wu W, Guo Y, Yu H, et al. International Journal of Electrochemical Science, 2015, 10(12), 10689. 10 Zhang M Q, Han Y, Zu G Q, et al. Scanning. 2020, 11. 11 Safikhani A, Esmailian M, Reza S M, et al. International Journal of Hydrogen Energy, 2014, 39(21), 11210. 12 Yun D W, Seo H S, Jun J H, et al. International Journal of Hydrogen Energy, 2012, 37(13), 10328. 13 Azim S, Mohammad E, Taleb T, et al. International Journal of Hydrogen Energy, 2016, 41(14), 6045. 14 Geng S, Zhu J. Journal of Power Sources, 2006, 160(2), 1009. 15 Holt A, Kofstad P. Solid State Ionics, 1999, 117(1), 21. 16 Seo H S, Yun D W, Kim K Y. International Journal of Hydrogen Energy, 2012, 37(21), 16151. 17 Huang X Z, Yang G T. Chinese Journal of Materials Research, 2014, 28(9), 641 (in Chinese). 黄训增, 杨弋涛. 材料研究学报, 2014, 28(9), 641. 18 Young J. Corrosion Series, 2008, 1, 185. 19 Ali-Loytty H, Jusssila P, Valden M. International Journal of Hydrogen Energy, 2013, 38(2), 1039. 20 Seo H S, Yun D W, Kim K Y. International Journal of Hydrogen Energy, 2013, 38(5), 2432. 21 Yun D W, Seo H S, Jun J H, et al. International Journal of Hydrogen Energy, 2011, 36(9), 5595. 22 Ali-Loytty H, Jussila P, Juuti T, et al. International Journal of Hydrogen Energy, 2012, 37(19), 14528. 23 Fu J W, Cui K, Li F, et al. Corrosion Engineering, Science and Technology, 2021, 56(3), 244. 24 Mao H H, Qi X, Cao J, et al. Journal of Iron and Steel Research, International, 2017, 24, 561. 25 Becquerelle P, Hubert M, Savage B. Materials Science and Engineering, 1987, 87, 137. 26 Inoue Y, Hiraid N, Ushioda K J I I. ISIJ International, 2018, 58(6), 1117. 27 Zhang Y B, Zou D N, Wang Q S, et al. Iron & Steel, 2021, 56(3), 71 (in Chinese). 张英波, 邹德宁, 王泉生, 等. 钢铁, 2021, 56(3), 71. 28 Zhang Y, Zou D, Li Y, et al. Journal of Materials Research and Technology, 2021, 11, 1730. 29 Zou D, Zhou Y, Zhang X, et al. Materials Characterization, 2018, 136, 435. 30 Zhang X. Study on recrystallization behavior, formability and high temperature oxidation resistance of ultra-pure ferritic stainless steel containing Al. Ph. D. Thesis, Shanghai University, China, 2016 (in Chinese). 张鑫. 含Al超纯铁素体不锈钢再结晶行为、成形性和高温抗氧化性能研究. 博士学位论文, 上海大学, 2016. 31 Zhang X, Fan L, Xu Y, et al. Materials & Design, 2015, 65, 682. 32 Jiang Z H, Zhuang Y, Li Y, et al. Journal of Iron and Steel Research, International, 2013, 20(5), 6. 33 Xu Y, Zhang X, Fan L, et al. Corrosion Science, 2015, 100, 311. 34 Xu Y, Fu H, Fan L, et al. Corrosion Science, 2019, 161, 108192. 35 Pint B A. Oxidation of Metals, 1996, 45(1), 1. 36 Wei L, Zhang J, Chen L, et al. Corrosion Science, 2018, 142, 79. 37 Peng X, Yan J, Zhou Y, et al. Acta Materialia, 2005, 53(19), 5079. 38 Cheng X, Jiang Z, Wei D, et al. Surface and Coatings Technology, 2014, 258, 257. 39 Safikhani A, Aminfard M. International Journal of Hydrogen Energy, 2014, 39(5), 2286. 40 Zhang H, Cui WF, Wang J J, et al. Journal of Rare Earths, 2010, 28(3), 366 (in Chinese). 张辉, 崔文芳, 王建军, 等. 中国稀土学报, 2010, 28(3), 366. 41 Li X, Shu J, Chen L, et al. Acta Metallurgica Sinica (English Letters), 2014, 27(3), 501. 42 Yu Y C, Zhang S H, Wang S B. High Temperature Materials and Processes, 2018, 37(9-10), 807. 43 Hu H B, Tang X Y. Auto Time, 2021(7), 143 (in Chinese). 胡海波, 汤旭炎. 时代汽车, 2021(7), 143. 44 Dong F, Zhao X H, Yang Lei, et al. Journal of Rare Earths, 2013, 31(2), 228 (in Chinese). 董方, 赵晓辉, 杨雷, 等. 中国稀土学报, 2013, 31(2), 228. 45 Dong F, Zhao X H, Yang L, Chinese Rare Earths, 2014, 35(1), 86 (in Chinese). 董方, 赵晓辉, 杨雷. 稀土, 2014, 35 (1), 86. 46 Li Y, Han J P, Jiang Z H, et al. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(1), 37. 47 Zhang X J. Study on microstructure and corrosion resistance of tin-containing ferritic stainless steel. Ph.D.Thesis, Northeastern University, China, 2017 (in Chinese). 张向军. 含锡铁素体不锈钢组织性能及耐蚀性能研究. 博士学位论文, 东北大学, 2017. 48 Cheng P Z, Dai N W, Zhong N, et al. Corrosion Engineering Science and Technology, 2020, 55(3), 232. 49 Jiang Z H, Han J P, Li Y, et al. Ironmaking & Steelmaking, 2015, 42(7), 504. |
|
|
|