INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Adhesive Technology of Space Optical Sensor Transmissive Mirror Group |
YANG Yu1,*, WANG Weihua2,*, LI Liansheng1, ZHANG Yao2, CHI Baihong2, JIA Yi2
|
1 Beijing Institute of Control Engineering, Beijing 100190, China 2 China Aerospace Science and Technology Innovation Research Institute, Beijing 100088, China |
|
|
Abstract Space optical sensors are very important parts of the spacecraft, and their reliable operation in the extreme space environment is the guarantee for the normal conduct of space activities and missions. The core of the space optical sensor lies in the manufacture of the optical system, and the current space optical sensor most commonly adopts a small and medium-aperture transmissive optical system, which requires precise assembly of the optical components. Compared with the connection method of mechanical fasteners, the adhesive method has more potential in the manufacture of small and medium-aperture transmissive optical systems; however, the adhesive method is rarely mentioned in the manufacture of optical lens systems for aerospace. In this work, the adhesive technology of the transmissive lens group for the optical system of the space optical sensor was systematically studied, the adhesive combination of XM31 as the lower layer adhesive and DP460 as the upper layer adhesive is determined through stress simulation and surface shape analysis, and the main factors influencing the shape size after the hemming are determined by L9(34) orthogonal test and range/variance analysis, and the reliability of the technology is evaluated by the space environment ground simulation experiment including thermal vacuum, temperature cycling, mechanical environment adaptability test, and the optimal adhesive technical parameters are finally determined. This research provides strong guidance for the adhesive technology of the transmission mirror group of space optical sensors in the future.
|
Published: 25 May 2025
Online: 2025-05-13
|
|
|
|
1 He F, Wang F, Dou W, et al. In:Proceedings of the 10th Academic Annual Conference of the Deep Space Exploration Technology Professional Committee of the Chinese Aerospace Society. Beijing, China, 2014, pp.328 (in Chinese). 何峰, 王峰, 窦伟, 等. 中国宇航学会深空探测技术专业委员会第十届学术年会论文集. 北京, 2014, pp.328. 2 Hao Y C. Aerospace Control and Application, 2017, 43(4), 9 (in Chinese). 郝云彩. 空间控制技术与应用, 2017, 43(4), 9. 3 Zhang H F, Sun Y, Li C J, et al. Aerospace Control and Application, 2020, 46(2), 80 (in Chinese). 张慧锋, 孙艳, 李春江, 等. 空间控制技术与应用, 2020, 46(2), 80. 4 Ma X R, Han Z Y, Zou Y J, et al. Journal of Astronautics, 2012, 33(1), 1 (in Chinese). 马兴瑞, 韩增尧, 邹元杰, 等. 宇航学报, 2012, 33(1), 1. 5 Zuo X Z, Jiang F, Zhang Y, et al. Chinese Journal of Applied Chemistry, 2014, 35(6), 1035 (in Chinese). 左晓舟, 姜峰, 张燕, 等. 应用光学, 2014, 35(6), 1035. 6 Zhang W H, Tang C H. Acta Aeronautica et Astronautica Sinica, DOI:10.7527/S1000-6893.2023.29965 (in Chinese). 张卫红, 唐长红. 航空学报, DOI:10.7527/S1000-6893.2023.29965. 7 Lei H S, Zhao Z A, Guo X G, et al. Aerospace Materials & Technology, 2021, 51(4), 10 (in Chinese). 雷红帅, 赵则昂, 郭晓岗, 等. 宇航材料工艺, 2021, 51(4), 10. 8 Zhu Y L. Aerospace China, 1996(7), 13 (in Chinese). 朱毅麟. 中国航天, 1996(7), 13. 9 Liu Q, He X, Zhang F. Infrared and Laser Engineering, 2014, 43(S1), 183 (in Chinese). 刘强, 何欣, 张峰. 红外与激光工程, 2014, 43(S1), 183. 10 Fan Z G, Chang H, Chen S Q, et al. Optics and Precision Engineering, 2011, 19(11), 2573 (in Chinese). 范志刚, 常虹, 陈守谦, 等. 光学精密工程, 2011, 19(11), 2573. 11 Wang S J. Research on bonding process simulation and stress analysis for plane optical components. Master Thesis, University of Electronic Science and Technology, China, 2014 (in Chinese). 王生军. 平面光学元器件粘接工艺与应力分析研究. 硕士学位论文, 电子科技大学, 2014. 12 Zhou X H, Xing H, Yang J K. Spacecraft Recovery & Remote Sensing, 2019, 40(3), 65 (in Chinese). 周小华, 邢辉, 杨居奎. 航天返回与遥感, 2019, 40(3), 65. 13 Yu J C, Yuan J, Cong S S, et al. Acta Optica Sinica, 2019, 39(5), 0523002 (in Chinese). 于霁晨, 袁健, 丛杉珊, 等. 光学学报, 2019, 39(5), 0523002. 14 Wang M Z, Wang Z W, Tan L F, et al. Computer Aided Engineering, 2019, 28(3), 36 (in Chinese). 王明珠, 王忠伟, 谭林峰, 等. 计算机辅助工程, 2019, 28(3), 36. 15 Yu C, Zhang D W, Yang Z X. Aviation Precision Manufacturing Technology, 2023, 34(3), 1003 (in Chinese). 于聪, 张大伟, 杨振兴. 航空精密制造技术, 2023, 34(3), 1003. 16 Huang C Y, Guo G K, Liang Y, et al. Journal of System Simulation, 2014, 26(12), 2985 (in Chinese). 黄春跃, 郭广阔, 梁颖, 等. 系统仿真学报, 2014, 26(12), 2985. 17 Hong Q H, He X F, Zhang M L. Bulletin of the Chinese Ceramic Society, 2024, 43(2), 617 (in Chinese). 洪侨亨, 贺雄飞, 张明朗. 硅酸盐通报, 2024, 43(2), 617. 18 Zhang N, Wang Y, Zhang Z F, et al. Infrared and Laser Engineering, 2022, 51(4), 20210295 (in Chinese). 张楠, 王跃, 张志飞, 等. 红外与激光工程, 2022, 51(4), 20210295. 19 QJ 1992, 20-90 Specification for preparation and bonding process of adhesive XM-31-1 sealant preparation and bonding sealing process aerospace industry standards of the Ministry of Aeronautics and Astronautics of the People’s Republic of China, China Standards Publishing House, China, 1992 (in Chinese). 中华人民共和国航空航天工业部航天工业标准, QJ 1992. 20-90 胶粘剂的配制与胶接工艺规范 XM-31-1密封胶的配制与胶接密封工艺, 中国标准出版社, 1992. 20 Huang Y H. Curing deformation mechanism and lens shape analysis of two adhesive structures. Master Thesis, Jilin University, China, 2023 (in Chinese). 黄翊航. 两种胶接结构固化变形机理与镜片面形分析. 硕士学位论文, 吉林大学, 2023. |
No related articles found! |
|
|
|
|