METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of High Temperature Protection and Thermal Barrier Coating System of TiAl-based Alloys |
ZHANG Yefei1, JIANG Haitao1,*, TIAN Shiwei1,2, ZHANG Siyuan1, LI Chong2
|
1 National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, University of Science and Technology Beijing, Beijing 100083, China 2 Luoyang Ship Materials Research Institute, Luoyang 471026, Henan, China |
|
|
Abstract Since 1970s, TiAl-based alloys have been used as a new lightweight high temperature structure candidate material because of their low density, high specific strength, ablative resistance, and good high-temperature mechanical properties. With the deepening of research on various strengthening and toughening measures, the problem of room temperature brittleness of TiAl-based alloys has been gradually solved. TiAl-based alloys have been successfully applied to aero-engine blades, aerospace vehicle skins, rudder wings, automobile exhaust valves, etc. However, the lack of high-temperature oxidation resistance of TiAl-based alloys limits their application as high-temperature components. At present, the high-temperature oxidation resistance of TiAl-based alloys is mainly improved by two methods: integral alloying and surface modification. Integral alloying is to add Nb, Si, Mo, W, rare earth and other alloying elements to the alloy, which promotes the formation of a dense oxide scale on the surface of the alloy and improves the adhesion between the oxide scale and the substrate. Surface modification mainly includes surface alloying and surface coating. Surface alloying technology generally includes thermal diffusion, ion implantation, pre-oxidation, laser surface alloying and so on. Surface coating technology is to use different kinds of coatings to improve the surface properties of the substrate, such as Ti-Al-X systemcoating, MCrAlY thermal barrier coating, ceramic coating, composite coating. Thermal barrier coating, as a coating material in surface modification, has excellent oxidation resistance and long-term service performance. When applied to the surface of TiAl-based alloy, it can effectively improve the high-temperature oxidation resistance of the alloy. However, the combination of the thermal barrier coating and TiAl-based alloys also has the following problems. The excessive growth of thermal grown oxides leads to interface failure, and the elements interdiffusion between the coating and the substrate is serious, resulting in the long-term service performance of the thermal barrier coating/TiAl-based alloy system is weakened. In this paper, the high-temperature oxidation behavior of TiAl-based alloys is summarized and analyzed. The influencing factors and mechanism of high-temperature protection of TiAl-based alloys are reviewed from two aspects of integral alloying and surface modification. The problems faced by the application of thermal barrier coatings on the surface of TiAl alloys are analyzed and the improvement scheme is proposed, in order to provide a reference for improving the high-temperature oxidation resistance of TiAl alloy and developing thermal barrier coating/TiAl alloy system.
|
Published: 25 February 2025
Online: 2025-02-18
|
|
|
|
1 Bewlay B P, Nag S, Suzuki A, et al. Materials at High Temperatures, 2016, 33(5), 549. 2 Leyens C, Peters M. Titanium and titanium alloys: fundamentals and applications, Weinheim: Wiley-VCH, Germany, 2003, pp. 513. 3 Neelam N S, Banumathy S, Bhattacharjee A, et al. Materials Today: Proceedings, 2019, 15, 30. 4 Kim S W, Hong J K, Na Y S, et al. Materials & Design, 2014, 54, 814. 5 Kim D, Seo D, Huang X, et al. International Materials Reviews, 2014, 59(6), 297. 6 Habel U, Heutling F, Kumze C, et al. In: Proceedings of the 13th World Conference on Titanium. Hoboken, NJ, USA: John Wiley & Sons, 2016, pp. 1223. 7 Kim B G, Kim G M, Kim C J. Scripta Metallurgica Et Materialia, 1995, 33(7), 1117. 8 Clarke D R, Oechsner M, Padture N P. MRS Bulletin, 2012, 37(10), 891. 9 Karaoglanli A C, Grund T, Turk A, et al. Surface and Coatings Techno-logy, 2019, 371, 47. 10 Birks N, Meier G H, Pettit F S. Introduction to the high temperature oxidation of metals, Cambridge University Press, UK, 2006, pp. 43. 11 Epifano E, Monceau D. Corrosion Science, 2023, 217, 111113. 12 Liu G L, Li Y. Acta Physica Sinica, 2012, 61(17), 423 (in Chinese). 刘贵立, 李勇. 物理学报, 2012, 61(17), 423. 13 Wang L. Research on processing and high temperature resistance of sputtering Al/Al2O3 gradual coating on γ-TiAl alloy. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2014 (in Chinese). 王玲. γ-TiAl合金表面溅射Al/Al2O3梯度涂层的工艺及其抗高温性能研究. 硕士学位论文, 南京航空航天大学, 2014. 14 Yoshihara M, Miura K. Intermetallics, 1995, 3(5), 357. 15 Lin J, Zhao L, Li G, et al. Intermetallics, 2011, 19(2), 131. 16 Lai X P, Li T F, Liu R, et al. Materials Reports, 2021, 35(S1), 374 (in Chinese). 赖旭平, 李天方, 刘瑞, 等. 材料导报, 2021, 35(S1), 374. 17 Zhao P X, Li X B, Xin W W, et al. Transactions of Nonferrous Metals Society of China, 2023, 33 (1), 128. 18 Knaislova A, Novak P, Cabibbo M, et al. Materials, 2021, 14(4), 1030. 19 Pflumm R, Donchev A, Mayer S, et al. Intermetallics, 2014, 53, 45. 20 Feng L, Li B, Li Q, et al. Materials Chemistry and Physics, 2024, 316, 129148. 21 Zhao P, Li X, Tang H, et al. Oxidation of Metals, 2020, 93(5), 433. 22 Kim D, Seo D Y, Kim S W, et al. Oxidation of Metals, 2016, 86 (5-6), 417. 23 Guo Q, Sun H, Cai Z, et al. Oxidation of Metals, 2022, 97(3), 323. 24 Hadi M, Bayat O, Meratian M, et al. Oxidation of Metals, 2018, 90(3), 421. 25 Naveed M, Renteria A F, Weib S. Journal of Alloys and compounds, 2017, 691, 489. 26 Schutze M, Friedle S. MRS Online Proceedings Library, 2013, 1516(1), 77. 27 Patel P, Zala A, Parekh T, et al. Surface and Coatings Technology, 2022, 447, 128839. 28 Li X, Taniguchi S, Matsunaga Y, et al. Intermetallics, 2003, 11(2), 143. 29 Gui C L, Ben H F, Liu X P, et al. Hot Working Technology, 2007, 36(2), 57 (in Chinese). 郭朝丽, 贲海峰, 刘小萍, 等. 热加工工艺, 2007, 36(2), 57. 30 Yao T, Liu Y, Liu B, et al. Surface and Coatings Technology, 2015, 277, 210. 31 Narita T, Izumi T, Yatagal M, et al. Intermetallics, 2000, 8(4), 371. 32 Liu X, You K, Wang Z, et al. Vacuum, 2013, 89, 209. 33 Panov D O, Sokovsky V S, Stepanov N D, et al. Corrosion Science, 2020, 177, 109003. 34 Yang Y, Shang H, Shao T. Applied Surface Science, 2020, 508, 145141. 35 Swadzba R, Laska N, Bauer P P, et al. Corrosion Science, 2020, 177, 108985. 36 Hu Y T, Zheng L, Yan H J, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(1), 193. 37 Nadine L, Reinhold B, Stephane K. Surface & Coatings Technology, 2018, 349, 347. 38 Braun R, Froehlich M, Leyens C. International Journal of Materials Research, 2010, 101(5), 637. 39 Dai J, Zhang N, Wang A, et al. Journal of Alloys and Compounds, 2018, 765, 46. 40 Pflumm R, Friedle S, Schutze M. Intermetallics, 2015, 56, 1. 41 Wu J J, Yan H J, Cao F H, et al. Surface and Coatings Technology, 2021, 422, 127495. 42 Wang S, Xie F, Wu X, et al. Ceramics International, 2019, 45(15), 18899. 43 Wang Y F, Liu S P, Wang X, et al. MW Metal Forming, 2022(11), 1 (in Chinese). 王一帆, 刘少璞, 王旭, 等. 金属加工(热加工), 2022(11), 1. 44 Chen W J, Song P, Gao D, et al. Journal of Aeronautical Materials, 2022, 42(1), 15 (in Chinese). 陈卫杰, 宋鹏, 高栋, 等. 航空材料学报, 2022, 42(1), 15. 45 Padture N P. Science, 2002, 296(5566), 280. 46 Ragan D D, Mates T, Clarke D R. Journal of the American Ceramic Society, 2003, 86(4), 541. 47 Burtin P, Brunelle J P, Pijolat M, et al. Applied Catalysis, 1987, 34, 225. 48 Darolia R. International Materials Reviews, 2013, 58(6), 315. 49 Hutchinson J W, He M Y, Evans A G. Journal of the Mechanics and Physics of Solids, 2000, 48(4), 709. 50 Dong H, Yang G J, Li C X, et al. Journal of the American Ceramic Society, 2014, 97(4), 1226. 51 Vialas N, Monceau D. Oxidation of Metals, 2006, 66(3-4), 155. 52 Yang L, Zou Z, Kou Z, et al. Acta Materialia, 2017, 139, 122. 53 Kim D, Huang X, Seo D, et al. Oxidation of Metals, 2012, 78(1), 31. 54 Puetz P, Huang X, Lima R S, et al. Surface and Coatings Technology, 2010, 205(2), 647. 55 Meng G H, Zhang B Y, Liu H, et al. Surface & Coatings Technology, 2018, 344, 102. 56 Zhang B Y, Yang G J, Li C X, et al. Applied Surface Science, 2017, 406, 99. 57 Dragos U, Gabriela M, Waltreut B, et al. Solid State Sciences, 2005, 7(4), 459. 58 Yu D, Gong J, Sun J, et al. Coatings, 2022, 12(7), 912. 59 Wang H, Wang Q S. Surface Technology, 2014, 43(3), 152 (in Chinese). 王皓, 王全胜. 表面技术, 2014, 43(3), 152. 60 Wang H, Zuo D, Chen G, et al. Corrosion Science, 2010, 52(10), 3561. 61 Nicolet M A. Thin Solid Films, 1978, 52(3), 415. 62 Ma J, Jiang S M, Gong J, et al. Corrosion Science, 2011, 53(9), 2894. 63 Ren P, Zhu S, Wang F. Corrosion Science, 2015, 99, 219. 64 Cavaletti E, Naveos S, Mercier S, et al. Surface and Coatings Technology, 2009, 204(6-7), 761. 65 Lang F, Narita T. Intermetallics, 2007, 15(4), 599. 66 Wu Y, Li X, Song G, et al. Oxidation of Metals, 2010, 74(5), 287. 67 Guo C, Wang W, Cheng Y, et al. Corrosion Science, 2015, 94, 122. 68 Shi J, Li H, Wan M, et al. Corrosion Science, 2016, 102, 200. 69 Li H, Wang Q, Jiang S, et al. Corrosion Science, 2011, 53(3), 1097. 70 Wang Q, Zhang K, Gong J, et al. Acta Materialia, 2007, 55(4), 1427. 71 Li H, Wang Q, Jiang S, et al. Corrosion Science, 2010, 52(5), 1668. 72 Cheng Y, Wang W, Zhu S, et al. Intermetallics, 2010, 18(4), 736. 73 Han D, Liu D, Niu Y, et al. Corrosion Science, 2021, 188, 109538. 74 Li Y, Xu J, Li J, et al. Corrosion Science, 2023, 222, 111416. 75 Burman C, Ericsson T, Kvernes I, et al. Surface and Coatings Technology, 1987, 32(1-4), 127. |
|
|
|