INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Self-doping in Metal Halide Perovskite Materials |
CHEN Xu, LIAO Jing, TAN Li, LI Haijin*
|
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China |
|
|
Abstract In recent years, numerous research has demonstrated that self-doping enables precise modulation of the conductivity type (p-type or n-type) in organic-inorganic metal halide perovskite materials, leading to improved light absorption and charge carrier transport, ultimately resulting in enhanced power conversion efficiency of solar cells. Furthermore, the sequential deposition of perovskite layers with different doping types has facilitated the development of novel bilayer perovskite homojunction/heterojunction (P-P junction) solar cells. When compared to conventional pe-rovskite solar cells, P-P junction solar cells exhibit an additional built-in electric field within the photoactive layer, which efficiently promotes the transmission of carrier, effectively reducing non-radiative recombination. Additionally, the inherent bipolar charge transport characteristics of perovskite materials allow them to function as both electron and hole transport layers. Consequently, the introduction of P-P junctions obviates the need for separate transport layers, thereby optimizing device architecture and simplifying fabrication processes. These advancements provide a promising direction for the further development of perovskite solar cells. This paper focuses on organic-inorganic metal halide perovskite materials, providing detailed insights into the methods employed to regulate self-doping types. It also comprehensively reviews the applications of self-doped perovskites in solar cells, elucidates the physical mechanisms and influencing factors associated with self-doped P-P junction solar cells, and concludes with a summary and outlook on the current technological challenges and future prospects in this field.
|
Published: 10 April 2025
Online: 2025-04-10
|
|
|
|
1 Que M, Que W, Yin X, et al. Nanoscale, 2016, 8(30), 14432. 2 Chen S, Dai X, Xu S, et al. Science, 2021, 373(6557), 902. 3 Min H, Lee D Y, Kim J, et al. Nature, 2021, 598(7881), 444. 4 Correa-Baena J P, Abate A, Saliba M, et al. Energy & Environmental Science, 2017, 10(3), 710. 5 Liang Z, Zhang Y, Xu H, et al. Nature, 2023, 624(7992), 557. 6 Li C, Lu X, Ding W, et al. Acta Crystallographica Section B: Structural Science, 2008, 64(6), 702. 7 Yang W S, Park B W, Jung E H, et al. Science, 2017, 356(6345), 1376. 8 Zhou H, Chen Q, Li G, et al. Science, 2014, 345(6196), 542. 9 Tsai H, Nie W, Blancon J C, et al. Nature, 2016, 536(7616), 312. 10 Green M A, Ho-Baillie A, Snaith H J. Nature Photonics, 2014, 8(7), 506. 11 Stranks S D, Snaith H J. Nature Nanotechnology, 2015, 10(5), 391. 12 Miyata A, Mitioglu A, Plochocka P, et al. Nature Physics, 2015, 11(7), 582. 13 Umari P, Mosconi E, De Angelis F. Scientific Reports, 2014, 4(1), 4467. 14 Stranks S D, Eperon G E, Grancini G, et al. Science, 2013, 342(6156), 341. 15 De Quilettes D W, Vorpahl S M, Stranks S D, et al. Science, 2015, 348(6235), 683. 16 Stranks S D, Burlakov V M, Leijtens T, et al. Physical Review Applied, 2014, 2(3), 034007. 17 Yang Xudong, Chen Han, Bi Enbing, et al. Acta Physica Sinica, 2015, 64(3), 038404. 18 Mahmud M A, Zheng J, Tang S, et al. ACS Energy Letters, 2023, 8(1), 21. 19 Ren X, Yang D, Yang Z, et al. ACS Applied Materials & Interfaces, 2017, 9(3), 2421. 20 Sun H, Xiao K, Gao H, et al. Advanced Materials, 2024, 36(2), 2308706. 21 Oku T, Ohishi Y, Suzuki A. Chemistry Letters, 2016, 45(2), 134. 22 Nayak P K, Sendner M, Wenger B, et al. Journal of the American Che-mical Society, 2018, 140(2), 574. 23 Pérez-del-Rey D, Forgács D, Hutter E M, et al. Advanced Materials, 2016, 28(44), 9839. 24 Tse-Wei Wang J, Wang Z, Pathak S, et al. Energy & Environmental Science, 2016, 9(9), 2892. 25 Zohar A, Levine I, Gupta S, et al. ACS Energy Letters, 2017, 2(10), 2408. 26 Ma Z Q, Zhu X, Wang C. Journal of Physics: Conference Series, 2023, 2473(1), 012022. 27 Shi T, Yin W J, Hong F, et al. Applied Physics Letters, 2015, 106(10), 103902. 28 Frolova L A, Dremova N N, Troshin P A. Chemical Communications, 2015, 51(80), 14917. 29 Streetman B G, Banerjee S. Solid state electronic devices, Boston: Pearson, 2015, pp. 209. 30 Ji J, Yan L, Wang X, et al. Solar RRL, 2022, 6(6), 2200028. 31 Li D, Shi J, Xu Y, et al. National Science Review, 2018, 5(4), 559. 32 Yang T, Wu Q, Dai F, et al. Advanced Functional Materials, 2019, 30(20), 1903889. 33 Wang Q, Shao Y, Xie H, et al. Applied Physics Letters, 2014, 105(16), 163508. 34 Kulbak M, Levine I, Barak-Kulbak E, et al. Advanced Energy Materials, 2018, 8(23), 1800398. 35 Yin W J, Shi T, Yan Y. Applied Physics Letters, 2014, 104(6), 063903. 36 Gunawan O, Pae S R, Bishop D M, et al. Nature, 2019, 575(7781), 151. 37 Xu P, Chen S, Xiang H J, et al. Chemistry of Materials, 2014, 26(20), 6068. 38 Cui P, Wei D, Ji J, et al. Nature Energy, 2019, 4(2), 150. 39 Wei H, DeSantis D, Wei W, et al. Nature Materials, 2017, 16(8), 826. 40 Su Z, Chen Y, Li X, et al. Journal of Materials Science: Materials in Electronics, 2017, 28(15), 11053. 41 Paul G, Chatterjee S, Bhunia H, et al. The Journal of Physical Chemistry C, 2018, 122(35), 20194. 42 Mitzi D B, Feild C A, Schlesinger Z, et al. Journal of Solid State Che-mistry, 1995, 114(1), 159. 43 Dang Y, Zhou Y, Liu X, et al. Angewandte Chemie International Edition, 2016, 55(10), 3447. 44 Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorganic Chemistry, 2013, 52(15), 9019. 45 Wang W, Zhou J, Tang W. Journal of Inorganic Materials, 2022, 37(2), 129. 46 Cui P, Wei D, Ji J, et al. Solar RRL, 2017, 1(2), 1600027. 47 Song D, Cui P, Wang T, et al. The Journal of Physical Chemistry C, 2015, 119(40), 22812. 48 Almora O, Aranda C, Mas-Marzá E, et al. Applied Physics Letters, 2016, 109(17), 173903. 49 Deng Y, Ni Z, Palmstrom A F, et al. Joule, 2020, 4(9), 1949. 50 Zhang N, Zhang Z, Liu T, et al. Organic Electronics, 2023, 113, 106709. 51 Zhang P, Wu J, Zhang T, et al. Advanced Materials, 2018, 30(3), 1703737. 52 Xiong L, Guo Y, Wen J, et al. Advanced Functional Materials, 2018, 28(35), 1802757. 53 Suo X L, Liu Y, Zhang L L, et al. Materials Reports, 2021, 35(6), 6015(in Chinese). 索鑫磊, 刘艳, 张立来, 等. 材料导报, 2021, 35(6), 6015. 54 Xu L, Chen X, Jin J, et al. Nano Energy, 2019, 63, 103860. 55 Hatamvand M, Vivo P, Liu M, et al. Vacuum, 2023, 214, 112076. 56 Sun H, Deng K, Xiong J, et al. Advanced Energy Materials, 2020, 10(8), 1903347. 57 Li J, Dewi H A, Wang H, et al. Advanced Functional Materials, 2021, 31(42), 2103252. 58 Yang X, Li Q, Zheng Y, et al. Joule, 2022, 6(6), 1277. 59 Dänekamp B, Müller C, Sendner M, et al. The Journal of Physical Chemistry Letters, 2018, 9(11), 2770. 60 Ren L, Wang M, Li M, et al. Optical Materials, 2020, 100, 109687. 61 Wei Z, Yan K, Chen H, et al. Energy & Environmental Science, 2014, 7(10), 3326. 62 Liu J, Zhou Q, Kyi T N, et al. Journal of Materials Chemistry A, 2019, 7(22), 13777. 63 Zhao Q, Hazarika A, Chen X, et al. Nature Communications, 2019, 10(1), 2842. 64 Chen C, Song Z, Xiao C, et al. Nano Energy, 2019, 61, 141. 65 Xu X, Wang X. Small Structures, 2020, 1(1), 2000009. 66 Ji J, Liu X, Huang H, et al. Acta Physico Chimica Sinica, 2021, 37(4), 2008095(in Chinese). 纪军, 刘新, 黄浩, 等. 物理化学学报, 2021, 37(4), 2008095. 67 Zhang Y, Yang Z, Ma T, et al. Advanced Energy Materials, 2023, 13(12), 2203366. 68 Izadi F, Ghobadi A, Gharaati A, et al. Optik, 2021, 227, 166061. 69 Zhou Y, Fuentes-Hernandez C, Shim J, et al. Science, 2012, 336(6079), 327. 70 Isikgor F H, Zhumagali S T, Merino L V, et al. Nature Reviews Materials, 2022, 8(2), 89. 71 Cho S H, Byeon J, Jeong K, et al. Advanced Energy Materials, 2021, 11(17), 2100555. 72 Bu T, Liu X, Chen R, et al. Journal of Materials Chemistry A, 2018, 6(15), 6319. |
|
|
|