METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Femtosecond Laser Drilling Performance of GH4169 Nickel-based Superalloy |
CHEN Taili1,2, NIU Fan1, XU Lianghui2, CHEN Xinyue2, HOU Xiaowei2, SUN Jiang2, SI Yan2, FANG Xiuyang1,*, CAI Zhenbing1
|
1 Tribology Research Institute, Southwest Jiaotong University, Chengdu 610031, China 2 Cheng Du Hang Li (Group) Industrial Co., Ltd., Chengdu 611937, China |
|
|
Abstract In order to improve the drilling quality of femtosecond laser processing nickel-based superalloy materials and optimize the drilling laser processing parameters, drilling experiments were carried out. Using femtosecond laser processing test platform, under different processing parameters (single-layer feed rate, laser power) setting different parameter levels, the hole machining of nickel-based superalloy plate with thickness of 1 mm was carried out, at the same time, the cross-section morphology of the hole processed by EDM and femtosecond laser was compared. The results show that the number of penetrating layers decreases with the increase of laser processing power and single layer feed rate. The size of the entrance aperture and the exit aperture increases with the increase of the laser power, and decreases with the increase of the single-layer feed rate. The hole taper decreases first and then increases with the increase of the laser power and the single-layer feed rate, when the single-layer feed rate is 15 μm, the overall taper of the hole is small, and the minimum taper is 2.3 °. The roughness of the exit region is generally larger than that of the entrance, and the periodic columnar structure is formed in the exit region. Serious internal defects such as recast layer and irregular microcracks are produced in the inner wall of small holes machined by EDM. However, there are no defects such as remelting layer, intergranular corrosion, heat affected zone and cracks in the inner wall of femtosecond laser processing, forming the inner wall morphology of nano-stripe structure, and the processing quality is good. Under the condition of fixed spot shape and wavelength, the optimal drilling quality of nickel-based superalloy plate with 1 mm thickness can be obtained when the laser power is 14 W and the single-layer feed rate is 15 μm.
|
Published: 10 May 2025
Online: 2025-04-28
|
|
|
|
1 Cai Z B, Li Z Y, Yin M G, et al. Tribology International, 2020, 144, 106095. 2 Fang X Y, Gong J E, Yu Y Q, et al. Optics & Laser Technology, 2024, 170, 110301. 3 Li Z Y, Guo X W, Yang Z B, et al. Materials Chemistry and Physics, 2024, 311, 128546. 4 Cheng J, Li J L, Zhang Z W, et al. Acta Photonica Sinica, 2023, 52(7), 86(in Chinese). 成健, 李嘉乐, 张志伟, 等. 光子学报, 2023, 52(7), 86. 5 Li Z M, Wang X, Nie J S. Acta Photonica Sinica, 2017, 46(10), 29(in Chinese). 李志明, 王玺, 聂劲松. 光子学报, 2017, 46(10), 29. 6 Dai P, Lin F. Journal of Engineering for Thermal Energy and Power, 2009, 24(4), 415 (in Chinese). 戴萍, 林枫. 热能动力工程, 2009, 24(4), 415. 7 Cheng Y X, Wang L, Yuan F H. Aeronautical Manufacturing Technology, 2017(15), 28(in Chinese). 程玉贤, 王璐, 袁福河. 航空制造技术, 2017(15), 28. 8 Xue Z L, Guo H B, Gong S K, et al. Journal of Aeronautical Materials, 2018, 38(2), 10(in Chinese). 薛召露, 郭洪波, 宫声凯, 等. 航空材料学报, 2018, 38(2), 10. 9 Li Y Y, He G Y, Liu H L, et al. Micromachines, 2023, 14(5), 913. 10 Li S F, Huang K, Ma H S, et al. Journal of Engineering for Thermal Energy and Power, 2022, 37(9), 1(in Chinese). 李世峰, 黄康, 马护生, 等. 热能动力工程, 2022, 37(9), 1. 11 Zhang F Y, Sun S F, Wang X, et al. The International Journal of Advanced Manufacturing Technology, 2023, 127(1-2), 93. 12 Zhang Z F, Wang W H, Jiang R S, et al. Optics & Laser Technology, 2019, 121, 105834. 13 Qiu Y, Liu Z, Li Y C, et al. Laser & Infrared, 2022, 52(2), 196(in Chinese). 邱一, 刘壮, 李元成, 等. 激光与红外, 2022, 52(2), 196. 14 He X L, Ma G Q, Xiao Q. Laser & Infrared, 2022, 52(4), 476(in Chinese). 何雪莉, 马国庆, 肖强. 激光与红外, 2022, 52(4), 476. 15 Zhao W Q, Yu Z S. Optics and Lasers in Engineering, 2018, 105, 125. 16 Gao F Q. Research on the mechanism of underwater laser cutting of SiC ceramics. Master’s Thesis, Jiangsu University, China, 2021(in Chinese). 高福强. SiC陶瓷水下激光切孔机理研究. 硕士学位论文, 江苏大学, 2021. 17 Gou G. Experimental and process simulation study on YAG solid state laser small hole machining. Master’s Thesis, Xihua University, China, 2015(in Chinese). 苟刚. YAG固体激光小孔加工实验及工艺仿真研究. 硕士学位论文, 西华大学, 2015. 18 Shen T L, Si J H, Chen T, et al. Laser & Optoelectronics Progress, 2020, 57(11), 248(in Chinese). 沈天伦, 司金海, 陈涛, 等. 激光与光电子学进展, 2020, 57(11), 248. 19 Ma G Q, Xiao Q. Laser & Infrared, 2020, 50(6), 651(in Chinese). 马国庆, 肖强. 激光与红外, 2020, 50(6), 651. 20 Liu Y, Zhu X P, Jin C, et al. Acta Photonica Sinica, 2023, 52(7), 67(in Chinese). 刘洋, 朱香平, 靳川, 等. 光子学报, 2023, 52(7), 67. 21 Tian B Y. Research on micro EDM deep hole machining and surface integrity. Master’s Thesis, Harbin Institute of Technology, China, 2022(in Chinese). 田博宇. 微细电火花深小孔加工及表面完整性研究. 硕士学位论文, 哈尔滨工业大学, 2022. 22 Das D K, Pollock T M. Journal of Materials Processing Technology, 2009, 209(15-16), 5661. 23 Li M, Wen Z X, Wang P, et al. Journal of Materials Processing Technology, 2023, 312, 117827. 24 Nedyalkov N N, Dikovska A, Ninov R, et al. Optics & Laser Technology, 2021, 144(107), 402. 25 Wang J. Research on femtosecond laser rotary cutting and drilling process of GH4133 nickel based high-temperature alloy. Master’s Thesis, Jiangsu University, China, 2022(in Chinese). 王杰. GH4133镍基高温合金飞秒激光旋切打孔工艺研究. 硕士学位论文, 江苏大学, 2022. 26 Zhao W I, Mei X S, Wang L Z. Ceramics International, 2022, 48(24), 36297. 27 Yang X Y. Research on expert system for laser welding pool morphology based on approximate energy attenuation keyhole model. Master’s Thesis, Harbin University of Commerce, China, 2023(in Chinese). 杨兴亚. 基于近似能量衰减匙孔模型的激光焊熔池形貌专家系统研究. 硕士学位论文, 哈尔滨商业大学, 2023. 28 Singh M, Singh S, Kumar S. Journal of Manufacturing Processes, 2020, 60, 586. |
|
|
|