INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on TiO2 Extraction and Preparation of Titanium Dioxide from Ilmenite |
YANG Shuangyu, LIAO Yalong*, JIA Xiaobao, WU Min
|
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
|
Abstract Titanium resources in China account for about one-third of the global titanium resources reserves, but they exist mainly in the form of primary titanium (magnetic) iron ore where titanium and iron are symbiosed, and it is complicated and difficult to efficiently utilize this kind of resources. The technological status of TiO2 extraction from ilmenite and production of titanium dioxide is reviewed in the summary. The characteristics, advantages and disadvantages of various methods are analyzed. The analysis shows that the main preparation methods are sulfuric acid method, hydrochloric acid method, fluorination method, molten salt method and alkaline roasting method. Sulfuric acid method, the main stream process for the production of titanium dioxide in China, has low requirements on raw materials, but there are several problems such as long production process, low product quality, difficult treatment of by-products and “three wastes” discharge. Hydrochloric acid method, using extraction process to separate iron, has some problems such as co-extraction of ferrotitanium and equipment corrosion caused by volatile hydrochloric acid, and some defects such as high price of extractant and difficult recycling. The fluorination method, using NH4F or NH4HF2 as the leaching agent, has the advantages of mild reaction conditions, but has the problem of equipment corrosion. The submolten salt process, using a high concentration of KOH liquid phase medium to decompose ilmenite, has advantages of mild reaction conditions and low “three wastes” discharge, but has the defects of large consumption of submolten salt and difficult recycling of lye. Alkaline roasting method, using weak acid to decompose ilmenite after roasting, is superior in technology, but has problems of large consumption of alkaline substances and high cost. It is still in the research stage. To prepare titanium dioxide with ilmenite as raw materials, it is still necessary to optimize and improve the traditional process, and increase the investment in research and development of new processes, in order to eliminate the shortcomings of the existing preparation scheme and promote the healthy development of the titanium dioxide industry.
|
Published: 10 April 2025
Online: 2025-04-10
|
|
|
|
1 An Z S, Chen Y, Zhao W. Titanium Industry Progress, 2023, 40(2), 40 (in Chinese). 安仲生, 陈岩, 赵巍. 钛工业进展, 2023, 40(2), 40. 2 Che D, Zhang Z Z, Pan Z S. Geology in China, 2023, 50 (4), 1058(in Chinese). 车东, 张照志, 潘昭帅, 等. 中国地质, 2023, 50 (4), 1058. 3 Yu H D, Wang L N, Qu J K, et al. Journal of Northeastern University (Natural Science), 2020, 41 (2), 275(in Chinese). 于宏东, 王丽娜, 曲景奎, 等. 东北大学学报(自然科学版), 2020, 41(2), 275. 4 Perks C, Mudd G. Ore Geology Reviews, 2019, 107, 629. 5 Gazquez M J, Bolivar J P, Garcia-Tenorio R, et al. Journal of Hazardous Materials, 2009, 166 (2/3), 1429. 6 Li L, Luo J L. Metal Mine, 2010(4), 89(in Chinese). 李亮, 罗建林. 金属矿山, 2010(4), 89. 7 Racovita A D. International Journal of Environmental Research and Public Health, 2022, 19(9), 5681. 8 Khitab A, Ahmad S, Munir M J, et al. Reviews on Advanced Materials Science, 2018, 53 (1), 90. 9 Chueangchayaphan W, Luangchuang P, Chueangchayaphan N. Polymers, 2022, 14 (23), 5267. 10 Lu P J, Huang S C, Chen Y P, et al. Journal of Food and Drug Analysis, 2015, 23 (3), 587. 11 Huang J S, Yu J, Kim H M, et al. Nanomaterials, 2019, 9 (8), 1175. 12 Allahverdiyev A M, Abamor E S, Bagirova M, et al. Future Microbiol, 2011, 6, 933. 13 Zhang Y, Fan W, Du H Q, et al. Surface Engineering, 2017, 33(11), 849. 14 Ismael M. Solar Energy, 2020, 211, 522. 15 Li J Z, Li X M, Wang Y. Dyestuffs and Coloration, 2022, 59 (5), 12(in Chinese). 李金泽, 李学敏, 王瑛. 染料与染色, 2022, 59 (5), 12. 16 Zhu X, Zheng S, Zhang Y, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(5), 4821. 17 Zeng W, Ma L, Li H Y, et al. Guangzhou Chemical Industry, 2022, 50(15), 100(in Chinese). 曾伟, 马磊, 李海艳, 等. 广州化工, 2022, 50(15), 100. 18 Sun Q S. Coating and Protection, 2021, 42 (11), 48(in Chinese). 孙群山. 涂层与防护, 2021, 42 (11), 48. 19 Qu Y C, Zhang Y Y. Chemical Engineering Design Communications, 2019, 45 (7), 153(in Chinese). 曲以臣, 张盈盈. 化工设计通讯, 2019, 45 (7), 153. 20 Gao J. Metallurgical Analysis, 2019, 39 (12), 8(in Chinese). 高健. 冶金分析, 2019, 39 (12), 8. 21 Cao P. Inorganic Chemicals Industry, 2019, 51 (9), 54(in Chinese). 曹鹏. 无机盐工业, 2019, 51 (9), 54. 22 Wang H B, Wu X P, Ma X, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(12), 3655(in Chinese). 王海波, 吴小平, 马鑫, 等. 中国有色金属学报, 2021, 31 (12), 3655. 23 Wang W, Liu Y, Xue T, et al. Chemical Engineering Science, 2015, 134, 196. 24 Wu X, Liu Y. High Temperature Materials and Processes, 2020, 39(1), 627. 25 Liao X F, Chen G, Liu Q Q, et al. Inorganic Chemicals Industry, 2016, 48 (8), 6(in Chinese). 廖雪峰, 陈菓, 刘钱钱, 等. 无机盐工业, 2016, 48 (8), 6. 26 Wang Z, Chen K, Zhu J, et al. IOP Conference Series:Materials Science and Engineering, 2019, 562(1), 012002. 27 Tian C. Dyes and Pigments, 2016, 133, 60. 28 Wang Z N, Chen K, Zhu J W, et al. Inorganic Chemicals Industry, 2020, 52 (3), 45(in Chinese). 王子楠, 陈葵, 朱家文, 等. 无机盐工业, 2020, 52 (3), 45. 29 Wu J C, Lu R F, Sun Q, et al. Iron Steel Vanadium Titanium, 2022, 43 (5), 35(in Chinese). 吴健春, 路瑞芳, 孙蔷, 等. 钢铁钒钛, 2022, 43 (5), 35. 30 Berkovich S A. US patent, US 3903239, 1975. 31 Deng K. Chlor-Alkali Industry, 2013, 49(7), 23(in Chinese). 邓科. 氯碱工业, 2013, 49(7), 23. 32 Duyvesteyn W P C, Spitler T M, Sabacky B J, et al. US patent, US 6548039, 2003. 33 Tang Y, Deng K, Zhang D M. Chlor-Alkali Industry, 2014, 50(4), 36(in Chinese). 唐勇, 邓科, 张定明. 氯碱工业, 2014, 50(4), 36. 34 ProcessResearch Ortech Inc.US patent, US7803336, 2010. 35 Wu Y, Lan G M. Titanium Industry Progress, 2021, 38(1), 37(in Chinese). 吴优, 兰光铭. 钛工业进展, 2021, 38(1), 37. 36 Shen X X. Engineering and Technological Research, 2013(6), 47(in Chinese). 沈小小. 冶金丛刊, 2013(6), 47. 37 Haverkamp R G, Kruger D, Rajashekar R. Hydrometallurgy, 2016, 163, 198. 38 Jabit N A, Senanayake G. Journal of Physics:Conference Series, 2018, 1082, 012089. 39 Lavasani S H, Azimi E, Sarvi M N. Metallurgical and Materials Transactions B, 2019, 50(6), 2586. 40 Anggraeni V M P, Supriyatna Y I, Astuti W, et al. Journal of Sustai-nable Metallurgy, 2023, 9(4), 1578. 41 Yu Y J, Song Y, Dong S S, et al. Iron Steel Vanadium Titanium, 2022, 43(4), 28(in Chinese). 于耀杰, 宋悦, 董仕顺, 等. 钢铁钒钛, 2022, 43(4), 28. 42 Hosseini E, Rashchi F, Ataie A. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(11), 1263. 43 Wang X, Liu W, Liang B, et al. Separation and Purification Technology, 2016, 158, 96. 44 Zhu K, Wei Q, Li H, et al. Minerals Engineering, 2022, 186, 107744. 45 Haverkamp R G, Wallwork K S, Waterland M R, et al. Industrial & Engineering Chemistry Research, 2022, 61(19), 6333. 46 Pu Z H. China Coatings, 2023, 38 (7), 57(in Chinese). 蒲中华. 中国涂料, 2023, 38 (7), 57. 47 Gordienko P S. EP patent, EP1683762, 2006. 48 Bakeeva N G, Gordienko P S, Pashnina E V. Russian Journal of General Chemistry, 2008, 78 (4), 527. 49 Bakeeva N G, Gordienko P S, Pashnina E V. Russian Journal of General Chemistry, 2009, 79 (1), 1. 50 Tong Q J. Study on preparation of titanate from titaniferous slag using sub-molten salt method. Master's Thesis, Institute of Process Engineering of Chinese Academy of Sciences, China, 2006(in Chinese). 仝启杰. 高钛渣亚熔盐法制备钛酸盐的研究. 硕士学位论文, 中国科学院过程工程研究所, 2006. 51 Tong Q J, Qi T, Liu Y M, et al. The Chinese Journal of Process Engineering, 2007, 7(1), 85(in Chinese). 仝启杰, 齐涛, 刘玉民, 等. 过程工程学报, 2007, 7(1), 85. 52 Liu Y M, Qi T, Wang L N, et al. The Chinese Journal of Process Engineering, 2009, 9(2), 319(in Chinese). 刘玉民, 齐涛, 王丽娜, 等. 过程工程学报, 2009, 9(2), 319. 53 Liu Y M, Qi T, Zhang Y. The Chinese Journal of Nonferrous Metals, 2009, 19(6), 1142(in Chinese). 刘玉民, 齐涛, 张懿. 中国有色金属学报, 2009, 19(6), 1142. 54 Xue T Y, Wang L N, Qi T, et al. Hydrometallurgy, 2009, 95 (1/2), 22. 55 Feng Y, Wang J G, Wang L N, et al. Rare Metals, 2009, 28 (6), 564. 56 Han Y F, Sun T C, Li J, et al. International Journal of Minerals, Metallurgy and Materials, 2012, 19 (3), 205. 57 Wang D, Chu J L, Li J, et al. Powder Technology, 2012, 232, 99. 58 Wang S Y, Jin Y J, Chu J L, et al. Iron Steel Vanadium Titanium, 2013, 34(3), 19(in Chinese). 王淑奕, 金英杰, 初景龙, 等. 钢铁钒钛, 2013, 34(3), 19. 59 Wang D, Chu J L, Liu Y H, et al. Industrial & Engineering Chemistry Research, 2013, 52 (45), 15756. 60 Chen J, Guo S H, Omran M, et al. Advanced Powder Technology, 2022, 33 (5), 103549. 61 Sampath A H J, Wickramasinghe N D, de Silva K M N, et al. Minerals, 2023, 13 (5), 662. 62 Sanchez-Segado S, Lahiri A, Jha A. Open Chemistry, 2014, 13(1), 270. 63 Parirenyatwa S, Escudero-Castejon L, Sanchez-Segado S, et al. Hydrometallurgy, 2016, 165, 213. 64 Ginting L I B, Manaf A, Astuti W, et al. IOP Conference Series:Earth and Environmental Science, 2023, 1201, 012092. 65 Tian C. Materials Research Bulletin, 2018, 103, 83. 66 Tian C. Scientific Reports, 2020, 10(1), 7999. 67 Tian C, Ma G, Ge H. Scientific Reports, 2023, 13(1), 8509. 68 Zeng F, Luo D, Zhang Z, et al. Journal of Alloys and Compounds, 2016, 670, 249. 69 Wu J C, Lu R F, Sun Q, et al. Iron Steel Vanadium Titanium, 2023, 44 (1), 10(in Chinese). 吴健春, 路瑞芳, 孙蔷, 等. 钢铁钒钛, 2023, 44 (1), 10. 70 Tian C. Materials Chemistry and Physics, 2020, 249, 123125. 71 Chen K, Yan X H, Wu P S, et al. Phase Transitions, 2021, 94(5), 353. 72 Zhang C, zhou C Y, He J, et al. Surface Technology, https://link.cnki.net/urlid/50.1083.TG.20230927.1647.006(in Chinese). 张成, 周春勇, 何俊, 等. 表面技术, https://link.cnki.net/urlid/50.1083.TG.20230927.1647.006. 73 Zhou H, Sun S, Ding H. Advances in Materials Science and Engineering, 2017, 2017, 1. 74 Xiao H, Wang J Y, Li W H, et al. Chinese Journal of Rare Metals, 2022, 46 (4), 523(in Chinese). 肖晖, 王经逸, 李文海, 等. 稀有金属, 2022, 46 (4), 523. 75 Tang S Y, Guo Y F, Zheng F Q, et al. Inorganic Chemicals Industry, 2022, 54 (7), 27(in Chinese). 唐舒扬, 郭宇峰, 郑富强, 等. 无机盐工业, 2022, 54 (7), 27. 76 Bi S. Iron Steel Vanadium Titanium, 2023, 44(1), 1(in Chinese). 毕胜. 钢铁钒钛, 2023, 44(1), 1. 77 Yuan W L, Wang B X, Zhao Y, et al. Nonferrous Metals Engineering, 2023, 13 (7), 61(in Chinese). 袁文龙, 王碧侠, 赵瑛, 等. 有色金属工程, 2023, 13 (7), 61. 78 Jiang Y, Peng C, Zhou K, et al. Journal of Cleaner Production, 2023, 415, 137817. 79 Gong J Z. Sulphuric Acid Industry, 2016(1), 67(in Chinese). 龚家竹. 硫酸工业, 2016(1), 67. 80 Ma G Q, Cheng M. Ferroelectrics, 2021, 581 (1), 281. 81 Cao X, Chen Y, Liang X, et al. Separations, 2023, 10(7), 400. 82 Jiang S P, Gan S P, Yang S M, et al. Journal of Salt Science and Chemical Industry, 2022, 51(7), 6(in Chinese). 蒋世鹏, 甘顺鹏, 杨三妹, 等. 盐科学与化工, 2022, 51(7), 6. 83 Xiong X H, Wang Z X, Wu, F X, et al. Advanced Powder Technology, 2013, 24 (1), 60. 84 Saida S, Kumar B, Roy G G, et al. Mining, Metallurgy & Exploration, 2023, 40(4), 1345. 85 Zhang Y W, Tang S Y, Yuan S J, et al. Iron Steel Vanadium Titanium, 2016, 37 (4), 29(in Chinese). 张耀文, 唐思扬, 袁绍军, 等. 钢铁钒钛, 2016, 37 (4), 29. 86 Tang S, Zhang Y, Yuan S, et al. RSC Advance, 2017, 7(72), 45607. 87 Li S Z, Ma K, Tang S Y, et al. Applied Chemical Industry, 2019, 48 (10), 2276 (in Chinese). 李淑贞, 马奎, 唐思扬, 等. 应用化工, 2019, 48 (10), 2276. 88 Ma K, Li S, Liao L, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(27), 9106. 89 Lu R, Li F, Li X, et al. Crystals, 2023, 13(11), 1553. 90 Sadeghi M H, Nasr Esfahany M. Industrial & Engineering Chemistry Research, 2022, 61 (4), 1786. 91 Chang W B, Chen J L, Dou J, et al. ACS Omega, 2022, 7 (26), 22447. 92 Hao Xiaohua, Xu Shuying, Zhang Yucang, et al. Nonferrous Metals (Extractive Metallurgy), 2016(10), 20(in Chinese). 郝小华, 徐树英, 张玉苍, 等. 有色金属(冶炼部分), 2016(10), 20. 93 Zhao G, Liu W, Yang S, et al. Chemical Engineering Communications, 2016, 203(9), 1207. 94 Huang W, Zhang Y, Lu J, et al. Ceramics International, 2023, 49(10), 15618. 95 Gong J Z. Inorganic Chemicals Industry, 2020, 52(10), 55(in Chinese). 龚家竹. 无机盐工业, 2020, 52(10), 55. 96 Krysenko G F, Epov D G, Medkov M A, et al. Theoretical Foundations of Chemical Engineering, 2016, 50 (4), 588. 97 Karelin V A, Strashko A N, Dubrovin A V, et al. Procedia Chemistry, 2014, 11, 56. 98 Zheng F Q, Guo Y F, Qiu G Z, et al. Journal of Hazardous Materials, 2018, 344, 490. 99 Zheng F Q, Guo Y F, Cheng F, et al. Metals, 2021, 11 (8), 1176 . |
|
|
|