INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Luminescence Properties and Energy Transfer Mechanism of Tunable Y2MgTiO6:Tm3+, Dy3+ Phosphors |
WANG Luyan1, XIONG Zhengye1, ZHONG Guotao2, HUANG Jinzhe2, LIU Hao1, GUO Jingyuan1,*
|
1 School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China 2 College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China |
|
|
Abstract A series of Y2MgTiO6:Tm3+, Dy3+(YMT:Tm3+, Dy3+) double perovskite phosphors with excellent luminescent properties were prepared by high temperature solid-state reaction method. The phase structure, composition and luminescence properties of the prepared products were studied by X-ray powder diffraction(XRD), photoluminescence spectrum, fluorescence lifetime spectrum and X-ray excitation spectrum, and the influence of Dy3+ doping amount on luminescent properties was analyzed. By comparing the photoluminescence spectrum and fluorescence lifetime of YMT:0.05Tm3+, yDy3+(y=0, 0.01, 0.05,0.1), it is found that there is an effective energy transfer from Tm3+ to Dy3+, and the energy transfer mechanism is dipole-dipole interaction. Under the excitation of ultraviolet light, the luminescence of YMT:0.05Tm3+, yDy3+ phosphor is blue-white-yellow broadband adjustable color, the CIE coordinate of white light is (0.331 6, 0.326 1), the color temperature is 5 538 K, the quantum efficiency(43.72%) is high, and the stability is good. The intensity of the phosphor under X-ray excitation is higher than that under ultraviolet excitation, and it has high radiation resistance and good thermal stability for X-ray. The research results show that YMT:Tm3+, Dy3+ can achieve broadband tunable white light emission, which is a potential X-ray or ultraviolet light excited white light emitting fluorescent material.
|
Published: 25 April 2025
Online: 2025-04-18
|
|
|
|
1 Pust P, Schmidt P J, Schnick W. Nature Materials, 2015, 14(5), 454. 2 Han M X, Cai L, Wang X Z, et al. Materials Reports, 2021, 35(S1), 51 (in Chinese). 韩美旭, 蔡伦, 王小泽, 等. 材料导报, 2021, 35(S1), 51. 3 Zhou F X, Zheng L M, Wang M, et al. Journal of the Chinese Society of Rare Earths, 2022, 40(5), 744 (in Chinese). 周方贤, 郑雷铭, 王明, 等. 中国稀土学报, 2022, 40(5), 744. 4 Zhu W, Yang A, Hao Z, et al. Ceramics International, 2024, 50(2), 3101. 5 Denault K A, Brgoch J, Gaultois M W, et al. Chemistry of Materials, 2014, 26(7), 2275. 6 Zhou Q, Zhou Y Y, Liu Y, et al. Journal of Materials Chemistry C, 2015, 3(13), 3055. 7 Yantake R, Sidike A, Yusufu T. Journal of Rare Earths, 2022, 40(3), 390. 8 Sun J Y, Zhang X Y, Xia Z G, et al. Journal of Applied Physics, 2012, 111(1), 013101. 9 Zhang L, Han P D, Han Y, et al. Journal of Alloys and Compounds, 2013, 558, 229. 10 He H, Song X F, Fu R L, et al. Journal of Alloys and Compounds, 2010, 493(1-2), 401. 11 Huh Y D, Shim J H, Kim Y, et al. Journal of the Electrochemical Society, 2003, 150(2), H57. 12 Tang J, Si J, Fan X Y, et al. Journal of Rare Earths, 2022, 40(6), 878. 13 Gao S J, Wang Z P, Zhou L Y, et al. Journal of the Chinese Ceramic Society, 2018, 46(7), 1021(in Chinese). 高少杰, 王智朋, 周玲玉, 等. 硅酸盐学报, 2018, 46(7), 1021. 14 Choudhary A K, Dwivedi A, Rai A, et al. Journal of Alloys and Compounds, 2021, 884, 161128. 15 Wu L, Zhang Y, Gui M Y, et al. Journal of Materials Chemistry, 2012, 22(13), 6463. 16 Li Z, Wang Y N, Xu Y P, et al. Spectroscopy and Spectral Analysis, 2023, 43(2), 623 (in Chinses). 李兆, 王亚楠, 徐祎朴, 等. 光谱学与光谱分析, 2023, 43(2), 623. 17 Hu X Y, Cao L F, Li J H, et al. Spectroscopy and Spectral Analysis, 2022, 42(7), 2063 (in Chinese). 胡欣妍, 曹龙菲, 李金华, 等. 光谱学与光谱分析, 2022, 42(7), 2063. 18 Fu H, Ren Q, Wu X L, et al. Journal of Luminescence, 2022, 252, 119330. 19 Naresh V, Lee N. Materials Science and Engineering B, 2021, 271, 115306. 20 Xie J X, Geng X J, Gao R H, et al. Journal of Optoelectronics·Laser, 2018, 29(4), 377 (in Chinses). 解吉星, 耿秀娟, 高荣华, 等. 光电子·激光, 2018, 29(4), 377. 21 Gopal R, Manam J. Ceramics International, 2022, 48(20), 30724. 22 Farooq U, Zhao Z, Sui Z L, et al. Journal of Alloys and Compounds, 2019, 778, 942. 23 Fan M H, Liu S, Yang K, et al. Ceramics International, 2020, 46(5), 6926. 24 Fuertes V, Fernández J F, Enríquez E. Journal of the European Ceramic Society, 2019, 39(10), 3221. 25 Shanbhag V V, Prashantha S C, Naik R, et al. Materials Today: Proceedings, 2021, 46, 5953. 26 Zhuo M P, Yu Y J, Ding L Y, et al. Materials Reports, 2023, 37(3), 50 (in Chinese). 卓明鹏, 俞燕君, 丁灵奕, 等. 材料导报, 2023, 37(3), 50. 27 Gao Y L, Zhang Y L, Yin L S. Materials Reports, 2014, 28(S1), 246 (in Chinese). 高银留, 张优灵, 尹荔松. 材料导报, 2014, 28(S1), 246. 28 Téllez D A L, Buitrago D M, Cardona C R, et al. Journal of Molecular Structure, 2014, 1067, 205. 29 Li J Q, Liao J S, Wen H R, et al. Journal of Luminescence, 2019, 213, 356. 30 Liu H, Guo J Y, Li X Y, et al. Journal of Luminescence, 2024, 267, 120392. 31 Jia Y Q. Journal of Solid State Chemistry, 1991, 95(1), 184. 32 Jiao M M, Guo N, Lü W, et al. Dalton Transactions, 2013, 42(34), 12395. 33 Luo J, Zhang Z Q, Xu J H, et al. Acta Physica Sinica, 2023, 72(1), 315(in Chinese). 罗杰, 张子秋, 徐俊豪, 等. 物理学报, 2023, 72(1), 315. 34 You P L, Yin G F, Chen X C, et al. Optical Materials, 2011, 33(11), 1808. 35 Dexter D L. The Journal of Chemical Physics, 1953, 21(5), 836. 36 Kumar A, Manam J. Journal of Alloys and Compounds, 2020, 829, 154610. 37 Krishna V M, Mahamuda S, Talewar R A, et al. Journal of Alloys and Compounds, 2018, 762, 814. 38 Srihari T, Jayasankar C K. Optical Materials, 2017, 69, 87. 39 Liao S Z, Song A, Zhang J L, et al. Ceramics International, 2023, 49(16), 27408. 40 Ling Y, Zhao R L, Guo X, et al. Optik, 2023, 287, 171115. 41 Islam S U, Latief U, Ahmad I, et al. Journal of Materials Science:Materials in Electronics, 2022, 33(29), 23137. 42 Liu H, Xiong Z Y, Zeng C X, et al. Nuclear Techniques, 2023, 46(6), 60(in Chinese). 刘昊, 熊正烨, 曾才兴, 等. 核技术, 2023, 46(6), 60. 43 Paulose P I, Jose G, Thomas V, et al. Journal of Physics and Chemistry of Solids, 2003, 64(5), 841. 44 Guo Y, Moon B K, Choi B C, et al. Journal of Luminescence, 2017, 181, 96. 45 Shi L Y, Zhao D, Zhang R J, et al. Dalton Transactions, 2022, 51(9), 3686. 46 Du P, Yu J S. Materials Research Bulletin, 2016, 84, 303. 47 Blasse G. Journal of Solid State Chemistry, 1986, 62(2), 207. 48 Li B, Huang X Y, Guo H, et al. Dyes and Pigments, 2018, 150, 67. 49 Zhang J, Ma Z Y, Guo J G, et al. Journal of Luminescence, 2019, 215, 116732. 50 Som S, Mitra P, Kumar V, et al. Dalton Transactions, 2014, 43(26), 9860. 51 Yadav R S, Dhoble S J, Rai S B. Sensors and Actuators B: Chemical, 2018, 273, 1425. 52 Zhao Y C, Zhang R B, Wang J J, et al. Journal of the Chinese Society of Rare Earths, 2023, 41(5), 853 (in Chinese). 赵宇聪, 张汝彬, 王俊杰, 等. 中国稀土学报, 2023, 41(5), 853. 53 Li Y L, Zhong X, Yu Y, et al. Materials Chemistry and Physics, 2021, 260, 124149. 54 Xu Z, Guo J Y, Xiong Z Y, et al. Acta Physica Sinica, 2021, 70(16), 295(in Chinese). 续卓, 郭竞渊, 熊正烨, 等. 物理学报, 2021, 70(16), 295. 55 Zhang J M, Yuan L F, Jin Y H, et al. Journal of Luminescence, 2022, 241, 118518. |
|
|
|