METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Microstructure Evolution of Rolled 7050 Aluminum Alloy During Double-pass Hot Deformation |
YAO Weiyi, BU Hengyong*
|
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
|
Abstract 7000 series aluminum alloys have attracted much attention due to their advantages such as low density, high strength, andhigh toughness. The alloy’s comprehensive performance can be enhanced through double-pass hot deformation in industry. To obtain the properties of aluminum alloy close to the ideal state, it is necessary to grasp the influence of double-pass hot deformation process parameters on the microstructure evolution. In this work, isothermal hot compression of 7050 aluminum alloy was carried out using TA DIL 805D thermomechanical machine. The predefined temperatures were 360 and 400 ℃, the strain rate was 0.05 s-1, the interval time was 10 and 100 s, the first-pass strains were 0.2, 0.4, 0.6, 0.8 and 1.0, and the total strain was 1.1. The effects of deformation temperature, interpass time and first-pass strain on the flow stress, static and dynamic softening mechanisms, second phase and texture of 7050 aluminum alloy were studied. The results show that dynamic and static softening mechanisms occurred in 7050 aluminum alloy during double-pass hot deformation, and both mechanisms were recrystallized. With the increase of deformation temperature, the recrystallization process is accelerated, and a strong P texture is formed, the first-pass strain increases, and the dynamic softening effect will sharply increase, which is beneficial for dynamic recrystallization. The cube and R-cube textures appear, and the strength increases with the increase of the first-pass strain. The increase of the interpass time results in a large amount of texture accumulating on the α-orientation line. In addition, some insoluble phases were found in the alloy after hot compression, but their number and distribution were independent of the deformation conditions.
|
Published: 25 February 2025
Online: 2025-02-18
|
|
|
|
1 Mukhopadhyay A. Metals Materials and Processes, 2007, 119(1), 1. 2 Warner T. Materials Science Forum, 2006, 519-521, 1271. 3 Robson J. Materials Science and Engineering A, 2004, 382, 112. 4 Ding S, Khan S A, Yanagimoto J. Materials Science and Engineering A, 2021, 822, 141673. 5 Zhang T, Lu S H, Zhang J B, Li Z F, et al. Materials Science and Engineering, 2017, 25(6), 065005. 6 Zhang R Y, Zhao G Y, Yu H, et al. Materials Science and Engineering, 2019, 611, 012003. 7 Jiang F L, Zhang H, Li L X, et al. Materials Science and Engineering A, 2012, 552, 269. 8 Lin Q Q, Peng D S, Zhang H, et al. Journal of Central South University (Science and Technology), 2005, 36(2), 183 (in Chinese). 林启权, 彭大暑, 张辉, 等. 中南大学学报(自然科学版), 2005, 36(2), 183. 9 Jiang F L, Zhang H, Meng C B, et al. Transactions of Materials and Heat Treatment, 2011, 32(3), 52 (in Chinese). 蒋福林, 张辉, 蒙春标, 等. 材料热处理学报, 2011, 32(3), 52. 10 Li Y. Aluminum Fabrication, 2014(3), 9 (in Chinese). 黎勇. 铝加工, 2014(3), 9. 11 Wang G, Tian C L, Kou L Y, et al. Heat Treatment of Metals, 2020, 45(5), 23 (in Chinese). 王冠, 田昌龄, 寇琳媛, 等. 金属热处理, 2020, 45(5), 23. 12 Li C, Li Z H, Huang S H, et al. Transactions of Materials and Heat Treatment, 2015, 36(12), 55 (in Chinese). 李晨, 李志辉, 黄树晖, 等. 材料热处理学报, 2015, 36(12), 55. 13 Chen Y, Zhao G, Liu C M, et al. Journal of Northeastern University (Natural Science), 2006, 27(1), 41 (in Chinese). 陈扬, 赵刚, 刘春明, 等. 东北大学学报(自然科学版), 2006, 27(1), 41. 14 Liu G J, Zhang H, Lin G Y, et al. Hot Working Technology, 2002, 6(6), 13 (in Chinese). 刘国金, 张辉, 林高用, 等. 热加工工艺, 2002, 6(6), 13. 15 Zhang K, Zhao X D, Chen H Q, et al. Journal of Aeronautical Materials, 2017, 37(3), 37 (in Chinese). 张坤, 赵晓东, 陈慧琴, 等. 航空材料学报, 2017, 37(3), 37. 16 Chen C. Effect of two-pass compression on microstructure and properties of 050 aluminum alloy. Master’s Thesis, Hunan University, China, 2021 (in Chinese). 陈诚. 双道次压缩对7050铝合金组织性能影响研究. 硕士学位论文, 湖南大学, 2021. 17 Tian C L. Study on double-pass hot deformation and microstructure evolution of aluminum alloy. Master’s Thesis, Ningxia University, China, 2019 (in Chinese). 田昌龄. 铝合金多道次热变形及组织演变研究. 硕士学位论文, 宁夏大学, 2019. 18 Chen M Y. Static softening behavior and microstructure evolution of high strength aluminum alloy during hot processing. Master’s Thesis, Taiyuan University, China, 2015 (in Chinese). 陈明义. 高强铝合金热加工静态软化行为与组织演变. 硕士学位论文, 太原科技大学, 2015. 19 Xiao G, Li F L, Guo P C, et al. Journal of Plasticity Engineering, 2021, 28(7), 31 (in Chinese). 肖罡, 李飞龙, 郭鹏程, 等. 塑性工程学报, 2021, 28(7), 31. 20 Yan L J. Influence of hot rolling on microstructure, texture and mechanical properties of Al-Zn-Mg-Cu alloy. Master’s Thesis, Northeastern University, China, 2017 (in Chinese). 颜利君. 热轧对超高强Al-Zn-Mg-Cu合金组织、织构及性能的影响. 硕士学位论文, 东北大学, 2017. 21 Xu C C, He H, Xue Z G, et al. Materials Characterization, 2021, 171, 110801. 22 Wang X K, Xiao D H, Wu M D, et al. Journal of Materials Research and Technology, 2021, 15, 4516. 23 Zeng X, Fan X G, Lia H W, et al. Materials Science and Engineering A, 2019, 760, 328. 24 Wu H, Wen S P, Huang H, et al. Materials Science and Engineering A, 2016, 651, 415. 25 Li Y L. Effect of accumulative roll bonding and aging heat treatment on microstructure and properties of 6061 alloy. Master’s Thesis, Hunan University of Technology, China, 2023 (in Chinese). 李林艳. 累积叠轧及时效热处理对6061铝合金组织与性能的影响. 硕士学位论文, 湖南工业大学, 2023. 26 Xiong C X, Deng Y L, Wan L, et al. The Chinese Journal of Nonferrous Metals, 2010, 20(3), 427 (in Chinese). 熊创贤, 邓运来, 万里, 等. 中国有色金属学报, 2010, 20(3), 427. 27 Zhang X M, Han J P, Liu S D, et al. Journal of Central South University (Science and Technology), 2012, 43(9), 3386 (in Chinese). 张新明, 韩建鹏, 刘胜胆, 等. 中南大学学报(自然科学版), 2012, 43(9), 3386. 28 Sidor J J, Petrov R H, Kestens L A I. Materials Characterization, 2011, 62(2), 228. 29 Sidor J, Miroux A, Petrov R H, et al. Acta Materialia, 2008, 56(11), 2495. 30 Yu J H. Research on high strain rate deformation behavior of 6016-T4 aluminum alloy sheet. Master’s Thesis, Shenyang University of Technology, China, 2021 (in Chinese). 于佳卉. 6016-T4铝合金板材高应变速率变形行为研究. 硕士学位论文, 沈阳工业大学, 2021. 31 Huang Z H. Study on microstructure and properties of 6082 aluminum alloy prepared by hot extrusion. Master’s Thesis, South China University of Technology, China, 2021 (in Chinese). 黄哲浩. 6082 铝合金热挤压工艺及其材料的组织与性能研究. 硕士学位论文, 华南理工大学, 2022. 32 Xua S C, Wang L D, Zhao P T, et al. Materials Science and Engineering A, 2011, 528(7), 3243. 33 Yuan H, Wang Q F, Zhang J W, et al. Journal of Alloys and Compounds, 2011, 509(3), 922. 34 Zdunek J, Adamczyk-Cieslak B, Koralnik M, et al. Journal of Manufacturing Processes, 2019, 47, 254. 35 Cui Y J. Influence of hot rolling on microstructure, texture and mechanical properties of 7N01 aluminium alloy. Master’s Thesis, Northeastern University, China, 2017 (in Chinese). 崔元钧. 热轧对7N01铝合金组织、织构及性能的影响. 硕士学位论文, 东北大学, 2017. 36 Qiu Q Q, Wu W, Yuan Y Y, et al. Transactions of Materials and Heat Treatment, 2024, 45(1), 62 (in Chinese). 邱铨强, 吴蔚, 袁悠悠, 等. 材料热处理学报, 2024, 45(1), 62. 37 Liao M S, Zhang X. Aluminum Fabrication, 2023(5), 34 (in Chinese). 廖明顺, 张昕. 铝加工, 2023(5), 34. 38 Couret A, Caillard D. Acta Metallurgica, 1988, 36(9), 2515. |
|
|
|