INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Structure and Microwave Dielectric Properties of Ba5[Nb1-x(Al1/3Mo2/3)x]4O15 Ceramics |
ZHANG Xiaohui1, ZHANG Zhehui1, ZHANG Xiaohua1,*, MA Shuai1, YUE Zhenxing2
|
1 School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China 2 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract With the comprehensive and rapid development of mobile communications, it is urgent to research and develop new microwave dielectric ceramic materials with medium εr and high Q value and low frequency temperature coefficient. In this work, (Al1/3Mo2/3)5+ were introduced into the B-site of the deficiency-type hexagonal perovskite ceramic Ba5Nb4O15 by solid-phase reaction method to investigate the effects of ion substitution on its phase composition, microstructure and microwave dielectric properties. The analysis shows that the moderate amount of (Al1/3Mo2/3)5+ substitution is favorable for the densification and sintering of Ba5Nb4O15 ceramics, however, when the doping amount is too much, the complete solid solution is not formed and the second phase BaMoO4 appears, which affects the microwave dielectric properties of the ceramic matrix to a certain extent. With increasing substitution, the dielectric constant and Q×f value of Ba5[Nb1-x(Al1/3Mo2/3)x]4O15 ceramics show a decreasing trend, but the composite substitution makes the τf value move in the negative direction. When x=0.1, the ceramic samples sintered at 1 385 ℃ have the optimal microwave dielectric properties: εr=37, Q×f=10 300 GHz, τf=6.5×10-6/℃. The experimental results show that the modified Ba5Nb4O15 ceramic dielectrics can be used as a candidate material for high-reliability mobile communication devices.
|
Published: 25 January 2025
Online: 2025-01-21
|
|
|
|
1 Hill M D, Cruickshank D B, MacFarlane I A. Applied Physics Letters, 2021, 118(12), 120501. 2 Shehbaz M, Du C, Zhou D, et al. Applied Physics Reviews, 2023, 10(2), 021303. 3 Wang G, Fu Q Y, Zhang L, et al. Materials Rerports, 2019, 33(7), 2151 (in Chinese). 王耿, 付邱云, 张芦, 等. 材料导报, 2019, 33(7), 2151. 4 Zhang G T, Gao Y, Liu S L, et al. Materials Rerports, 2023, 37(4), 72 (in Chinese). 章国涛, 高岩, 刘书利, 等. 材料导报, 2023, 37(4), 72. 5 Ni L Z, Li L X, Du M K. Journal of Alloys and Compounds, 2020, 844, 1. 6 Zhang Y C, Huang Y W, Zhang Y M, et al. Journal of the Chinese Ceramic Society, 2021, 49(4), 618 (in Chinese). 张迎春, 黄延伟, 张远谋, 等. 硅酸盐学报, 2021, 49(4), 618. 7 Zhao F, Yue Z, Pei J, et al. Applied Physics Letters, 2006, 89(20), 202901. 8 He M. Electronic Components and Materials, 2013, 32(8), 42 (in Chinese). 何茗. 电子元件与材料, 2013, 32(8), 42. 9 Lichtenberg F, Herrnberger A, Wiedenmann K, et al. Progress in Solid State Chemistry, 2001, 29, 1. 10 Zhang C, Xiao F, Qiu H, et al. Electronic Components and Materials, 2007, 26(8), 55 (in Chinese). 张冲, 肖芬, 邱虹, 等. 电子元件与材料, 2007, 26(8), 55. 11 Zhuang H, Yue Z X, Zhao F, et al. Japanese Journal of Applied Physics, 2008, 47(6), 4658. 12 Zhao F, Zhuang H, Yue Z X, et al. Materials Letters, 2007, 61(16), 3466. 13 Li J, Zhou Y Y, Wu J N, et al. Ceramics International, 2022, 48(19), 27973. 14 Huang Q, Zheng Y, Lyu X P, et al. Electronic Components and Mate-rials, 2016, 35(1), 1 (in Chinese). 黄琦, 郑勇, 吕学鹏, 等. 电子元件与材料, 2016, 35(1), 1. 15 Ratheesh R, Sreemoolanadhan H, Sebastian M T. Journal of Solid State Chemistry, 1997, 131, 2. 16 Zhang X H, Zhang J, Xie Z K, et al. Journal of the American Ceramic Society, 2015, 98(4), 1245. 17 Jawahar I N, Sebastian M T, Mohanan P. Materials Science and Enginee-ring: B, 2004, 106(2), 207. 18 Zhang Q, Su H, Peng R, et al. Journal of the European Ceramic Society, 2022, 42(6), 2813. 19 Yang M, Zou H X, Yang H M, et al. Journal of the European Ceramic Society, 2023, 43(5), 1964. 20 Nobrega F A C, Abreu R F, Colares D d M, et al. Materials Chemistry and Physics, 2022, 289, 126478. 21 Shu G J, Dou Z M, Yu Z N, et al. Materials Rerports, 2023, 37(Z1), 131 (in Chinese). 舒国劲, 窦占明, 喻振宁, 等. 材料导报, 2023, 37(Z1), 131. 22 Huang J J, Li Y M, Sun Y, et al. Journal of the Chinese Ceramic Society, 2023, 51(4), 851 (in Chinese). 黄家俊, 李月明, 孙熠, 等. 硅酸盐学报, 2023, 51(4), 851. 23 Fang L, Liu H F, Zhang H, et al. Journal of Materials Science, 2006, 41(4), 1281. 24 Zhao F, Yue Z X, Zhang Y C, et al. Key Engineering Materials, 2007, 280-283, 9. 25 Lee C T, Chen C T, Huang C Y, et al. Japanese Journal of Applied Phy-sics, 2008, 47(6), 4634. 26 Santha N I, Sebastian M T. Journal of the American Ceramic Society, 2007, 90(2), 496. 27 Zhang P C, Li H, Chen X Q, et al. Inorganic Chemistry Frontiers, 2022, 9(17), 4442. 28 Yang X, Kyzzhibek T, Genevois C, et al. Inorganic Chemistry, 2019, 58(16), 10974.
|
|
|
|