METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Effect of High Temperature Thermal Exposure on Pore Structure and Mechanical Properties of Plasma Sprayed YSZ |
WANG Zhejin, WANG Lishuang*, MA Zhongyu, DONG Hui, YAO Jiantao, ZHOU Yong
|
Xi’an Key Laboratory of High Performance Materials for Oil and Gas Fields, Key Laboratory of Corrosion Protection and New Materials for Oil and Gas Fields, School of Material Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China |
|
|
Abstract YSZ coatings were prepared by atmospheric plasma spray (APS) at different spraying distances and exposed to high temperature at 1 300 ℃ for different hours. The microstructure (apparent porosity, 2D porosity and 3D porosity) and mechanical properties (hardness and elastic modulus) of the YSZ coatings before and after thermal exposure were characterized. The results show that the apparent porosity, 2D pore density and 3D porosity of as-deposited coatings increased with the increase of spray distance, and the proportion of 3D pores in the coating increases. The apparent porosity and 2D porosity density of YSZ coatings deposited at the same spray distance decreased significantly and the 3D porosity remained stable after high temperature thermal exposure. Accordingly, the hardness and elastic modulus of YSZ coating after high temperature thermal exposure also increased significantly. Hardness, elastic modulus, apparent porosity and 2D pore density of coatings showed a two-stage evolution process during thermal exposure. All of them changed greatly from 0 h to 20 h, and changed slowly from 20 h to 100 h. Phase structure of coatings after thermal exposure was similar with as-deposited coatings. After 100 h thermal exposure, the apparent porosity and 2D porosity density decreased by about 35.8% and 68.2%, the hardness and elastic modulus increased by about 78.5% and 81%, respectively, by comparison, the 3D porosity decreased by only 8.6%. The healing of 2D pore during thermal exposure dominated the sintering densification of the coating. As a result, the mechanical properties of the coating changed. With the increase of spraying distance, the increase of 3D porosity increases, and the increment of coating hardness and elastic modulus decreases after thermal exposure. Therefore, the proportion of 3D pores in the coating is more, the better the anti-sintering performance of APS YSZ coatings.
|
Published: 25 February 2025
Online: 2025-02-18
|
|
|
|
1 Zhao L S, Zhong S M, Wang X W. Gas Turbine Technology, 2017, 30(3), 27 (in Chinese). 赵龙生, 钟史明, 王肖祎. 燃气轮机技术, 2017, 30(3), 27. 2 Han D J, Hao L, Bi C X, et al. Journal of Vibration and Shock, 2021, 40(4), 87 (in Chinese). 韩东江, 郝龙, 毕春晓, 等. 振动与冲击, 2021, 40(4), 87. 3 Thakare J G, Pandey C, Mahapatra M M, et al. Metals and Materials International, 2021, 27(7), 1947. 4 Wei Z Y, Meng G H, Chen L, et al. Journal of Advanced Ceramics, 2022, 11(7), 985. 5 Padture N P. Nature Materials, Nature Publishing Group, 2016, 15(8), 804. 6 Bakan E, Vaßen R. Journal of Thermal Spray Technology, 2017, 26(6), 992. 7 Guo H B, Gong S K, Xu H B. Materials China, 2009, 28(Z2), 18 (in Chinese). 郭洪波, 宫声凯, 徐惠彬. 中国材料进展, 2009, 28(Z2), 18. 8 Darolia R. International Materials Reviews, Taylor & Francis, 2013, 58(6), 315. 9 Padture N P, Gell M, Jordan E H. American Association for the Advancement of Science, 2002, 296(5566), 280. 10 Clarke D R, Oechsner M, Padture N P. MRS Bulletin, 2012, 37(10), 891. 11 Zhang B Y, Meng G H, Yang G J, et al. Applied Surface Science, 2017, 397, 125. 12 Zhang B Y, Shi J, Yang G J, et al. Journal of Thermal Spray Technology, 2015, 24(4), 611. 13 Dong H, Yang G J, Li C X, et al. Journal of the American Ceramic Society, 2014, 97(4), 1226. 14 Trice R W, Su Y J, Mawdsley J R, et al. Journal of Materials Science, 2002, 37(11), 2359. 15 Li G R, Xie H, Yang G J, et al. Journal of the American Ceramic Society, 2017, 100(5), 2176. 16 Li C J, Wang W Z. Materials Science and Engineering: A, 2004, 386(1), 10. 17 Li C J, Li Y, Yang G J, et al. Journal of Thermal Spray Technology, 2012, 21(3), 383. 18 Sun J Y, Pei Y L, Li S S, et al. Rare Metals, 2017, 36(7), 556. 19 Chevallier J, Isern L, Almandoz F K, et al. Emergent Materials, 2021, 4(6), 1499. 20 Dong H, Yang G J, Cai H N, et al. Ceramics International, 2015, 41(3, Part A), 3481. 21 Lima R S, Marple B R. Materials Science and Engineering: A, 2008, 485(1), 182. 22 Lima R S, Marple B R. Journal of Thermal Spray Technology, 2008, 17(5), 846. 23 Cheng B, Zhang Y M, Yang N, et al. Journal of the American Ceramic Society, 2017, 100(5), 1820. 24 Li T J, Li Y, Li W, et al. Materials Protection, 2017, 50(9), 23 (in Chinese). 李太江, 李勇, 李巍, 等. 材料保护, 2017, 50(9), 23. 25 Tang C H, Li G R, Liu M J, et al. China Surface Engineering, 2020, 33(2), 119 (in Chinese). 唐春华, 李广荣, 刘梅军, 等. 中国表面工程, 2020, 33(2), 119. 26 Eriksson R, Brodin H, Johansson S, et al. Surface and Coatings Technology, 2011, 205(23), 5422. 27 Xing Y Z, Wang K, Feng X, et al. Journal of Thermal Spray Technology, 2019, 28(8), 1995. 28 Li G R, Yang G J, Li C X, et al. Ceramics International, 2018, 44(3), 2982. 29 Liu T, Luo X T, Chen X, et al. Journal of Thermal Spray Technology, 2015, 24(5), 739. 30 Zhang B, Li G R, Xu T, et al. Journal of Aeronautical Materials, 2022, 42(1), 1 (in Chinese). 张博, 李广荣, 徐彤, 等. 航空材料学报, 2022, 42(1), 1. 31 Li G R, Yang G J, Li C X, et al. Journal of the European Ceramic Society, 2018, 38(9), 3325. 32 Paul S, Cipitria A, Tsipas S A, et al. Surface and Coatings Technology, 2009, 203(8), 1069. 33 Li C J, Ohmori A. Journal of Thermal Spray Technology, 2002, 11(3), 365. 34 Erk K A, Deschaseaux C, Trice R W. Journal of the American Ceramic Society, 2006, 89(5), 1673. 35 Kuczynski G C. Springer, Dordrecht, 1949, 185(2), 169. 36 Li G R, Yang G J. Advanced Ceramics, 2018, 39(5), 321 (in Chinese). 李广荣, 杨冠军. 现代技术陶瓷, 2018, 39(5), 321. 37 Yang G J, Chen Z L, Li C X, et al. Journal of Thermal Spray Technology, 2013, 22(8), 1294. 38 Zhou Y C, Hashida T. International Journal of Solids and Structures, 2001, 38(24), 4235. 39 Chen L, Yang G J. Journal of Advanced Ceramics, 2018, 7(1), 17. 40 Chen L, Yang G J. Journal of Thermal Spray Technology, 2018, 27(3), 255. |
|
|
|