POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Efficient Regulation of Emission Color from Green to Deep-red: Dibenzo [f, h] pyrido[3, 4-b] Quinoxaline Acceptor Based TADF Emitters |
ZHANG Bo1, HUANG Feixiang1, XIE Fengming2, YANG Yaozu1, HU Yingyuan1, ZHAO Xin1,*
|
1 College of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China 2 Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China |
|
|
Abstract Efficient thermally activated delayed fluorescence (TADF) emitters have an important application for organic light-emitting diodes (OLEDs). However, due to the limitations of the energy gap law, the development of efficient red TADF emitters with wavelengthsover 600 nm is challenging. Herein, a novel rigid larger conjugated planar acceptor dibenzo[f, h]pyrido[3, 4-b] quinoxaline (DBPQ) had been designed, and three TADF materials, namely DBPQtCz, DBPQDMAC and DBPQPXZ, were synthesized by connecting with different donors (tCz, DMAC and PXZ) to DBPQ. With the enhancement of electron-donating ability of the corresponding donors, the emission wavelengths of DBPQtCz, DBPQDMAC and DBPQPXZ were significantly red-shifted and turned from green, red to deep-red. The OLED based on DBPQDMAC obtained maximum external quantum efficiency (EQEmax) up to 16.0%, and the peak electroluminescent (EL) of 612 nm, while the EQEmax of DBPQPXZ is 3.2%, and the peak EL is 658 nm. Meanwhile, the OLEDs based on DBPQtCz, DBPQDMAC and DBPQPXZ achieved extremely low turn-on voltages of 2.4, 2.5 and 2.8 V, respectively.
|
Published: 10 January 2025
Online: 2025-01-10
|
|
|
|
1 Yang H Y, Zhang H Y, Zhang M, et al. Chemical Engineering Journal, 2023, 468, 143721. 2 Xie F M, Zeng X Y, Zhou J X, et al. Journal of Materials Chemistry C, 2020, 8(44), 15728. 3 Xie F M, Wu P, Zou S J, et al. Advanced Electronic Materials, 2020, 6(1), 1900843. 4 Li H, Shu H, Wang X, et al. Dyes and Pigments, 2021, 184, 108810. 5 Wang H, Wang K, Chen J X, et al. Advanced Functional Materials, 2023, 33(41), 2304398. 6 Fan X, Hao X, Huang F, et al. Advanced Science, 2023, 10(28), 2303504. 7 Zhou C, Cao C, Yang D, et al. Materials Chemistry Frontiers, 2021, 5(7), 3209. 8 Dong R, Liu D, Li J, et al. Materials Chemistry Frontiers, 2022, 6(1), 40. 9 Si C, Hu Y N, Sun D, et al. Journal of Materials Chemistry C, 2023, 11(36), 12174. 10 Fecková M, Kalis I K, Roisnel T, et al. Chemistry-A European Journal, 2021, 27(3), 1145. 11 Qu L, Xiao H, Zhang B, et al. Chemical Engineering Journal, 2023, 471, 144709. 12 Long Y, Chen K, Li C, et al. Chemical Engineering Journal, 2023, 471, 144759. 13 Sun K, Cai Z, Jiang J, et al. Dyes and Pigments, 2020, 173, 107957. 14 Kumsampao J, Chaiwai C, Chasing P, et al. Chemistry—An Asian Journal, 2020, 15(19), 3029. 15 Gong X, Li P, Huang Y H, et al. Advanced Functional Materials, 2020, 30(16), 1908839. 16 Liang J, Li C, Cui Y, et al. Journal of Materials Chemistry C, 2020, 8(5), 1614. 17 Zhu L, Liu Y, Wang X, et al. Chemical Engineering Journal, 2023, 473, 145449. 18 Kothavale S, Kim S C, Cheong K, et al. Advanced Materials, 2023, 35(13), 2208602. 19 Zhang H Y, Yang H Y, Zhang M, et al. Materials Horizons, 2022, 9(9), 2425. 20 Chen J X, Xiao Y F, Wang K, et al. Angewandte Chemie International Edition, 2021, 133(5), 2508. 21 Zhao T, Jiang S, Wang Y, et al. ACS Applied Materials & Interfaces, 2023, 15(25), 30543. 22 Chen J X, Tao W W, Chen W C, et al. Angewandte Chemie International Edition, 2019, 131(41), 14802. 23 Wang S, Yan X, Cheng Z, et al. Angewandte Chemie International Edition, 2015, 54(44), 13068. 24 Yang Z, Ge X, Li W, et al. Chemical Engineering Journal, 2022, 442, 136219. 25 Gao T, Shen S, Qin Y, et al. Journal of Materials Chemistry C, 2022, 10(45), 17053. 26 Xiao F, Wang M, Lei Y, et al. Chemistry—An Asian Journal, 2020, 15(21), 3437. 27 Luo J, Xie Z, Lam J W Y, et al. Chemical Communications, 2001 (18), 1740. 28 Chen S, Zeng P, Wang W, et al. Journal of Materials Chemistry C, 2019, 7(10), 2886. 29 Nasiri S, Macionis S, Gudeika D, et al. Journal of Luminescence, 2020, 220, 116955. 30 Che W, Xe Y, Li Z. Asian Journal of Organic Chemistry, 2020, 9(9), 1262. 31 Xie F M, Li H Z, Dai G L, et al. ACS Applied Materials & Interfaces, 2019, 11(29), 26144. 32 Huang T, Liu D, Jiang J, et al. Chemistry—A European Journal, 2019, 25(46), 10926. 33 Si C, Hu Y N, Sun D, et al. Journal of Materials Chemistry C, 2023, 11(36), 12174. 34 Becke A D. The Journal of Chemical Physics, 1993, 98(2), 1372. 35 Zhang Q, Kuwabara H, Potscavage Jr W J, et al. Journal of the American Chemical Society, 2014, 136(52), 18070. 36 Wang Z, Zhu X, Zhang S, et al. Advanced Optical Materials, 2021, 9(5), 2001764. 37 Liu H, Liu H, Fan J, et al. Advanced Optical Materials, 2020, 8(21), 2001027. 38 Kandi D, Mansingh S, Behera A, et al. Journal of Luminescence, 2021, 231, 117792. 39 Zhang H, Li A, Li G, et al. Advanced Optical Materials, 2020, 8(14), 1902195. 40 Huo J, Zheng Y, Zhang D, et al. Dyes and Pigments, 2021, 196, 109781. 41 Zeng J, Guo J, Liu H, et al. Advanced Functional Materials, 2020, 30(17), 2000019. 42 Wu C, Zhang Y, Ma D, et al. Dyes and Pigments, 2020, 173, 107895. |
|
|
|